This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the well-founded predicate. Exercise 1 of TakeutiZaring p. 31. (Contributed by NM, 3-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frss | |- ( A C_ B -> ( R Fr B -> R Fr A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 | |- ( x C_ A -> ( A C_ B -> x C_ B ) ) |
|
| 2 | 1 | com12 | |- ( A C_ B -> ( x C_ A -> x C_ B ) ) |
| 3 | 2 | anim1d | |- ( A C_ B -> ( ( x C_ A /\ x =/= (/) ) -> ( x C_ B /\ x =/= (/) ) ) ) |
| 4 | 3 | imim1d | |- ( A C_ B -> ( ( ( x C_ B /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) ) |
| 5 | 4 | alimdv | |- ( A C_ B -> ( A. x ( ( x C_ B /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) ) |
| 6 | df-fr | |- ( R Fr B <-> A. x ( ( x C_ B /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 7 | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( A C_ B -> ( R Fr B -> R Fr A ) ) |