This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frrlem16 | |- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predres | |- Pred ( R , A , w ) = Pred ( ( R |` A ) , A , w ) |
|
| 2 | relres | |- Rel ( R |` A ) |
|
| 3 | ssttrcl | |- ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) |
|
| 4 | 2 3 | ax-mp | |- ( R |` A ) C_ t++ ( R |` A ) |
| 5 | predrelss | |- ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) ) |
|
| 6 | 4 5 | ax-mp | |- Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) |
| 7 | 1 6 | eqsstri | |- Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) |
| 8 | inss1 | |- ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) |
|
| 9 | coss1 | |- ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) |
| 11 | coss2 | |- ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) ) |
|
| 12 | 8 11 | ax-mp | |- ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) |
| 13 | 10 12 | sstri | |- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) |
| 14 | ttrcltr | |- ( t++ ( R |` A ) o. t++ ( R |` A ) ) C_ t++ ( R |` A ) |
|
| 15 | 13 14 | sstri | |- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) |
| 16 | predtrss | |- ( ( ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) /\ w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
|
| 17 | 15 16 | mp3an1 | |- ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 18 | 7 17 | sstrid | |- ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 19 | 18 | ancoms | |- ( ( z e. A /\ w e. Pred ( t++ ( R |` A ) , A , z ) ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 20 | 19 | ralrimiva | |- ( z e. A -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 21 | 20 | adantl | |- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |