This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 . (Contributed by Scott Fenton, 10-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frr3g | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ra4v | |- ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
|
| 2 | r19.26 | |- ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) |
|
| 3 | 2 | anbi2i | |- ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) <-> ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) ) |
| 4 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 5 | id | |- ( y = z -> y = z ) |
|
| 6 | predeq3 | |- ( y = z -> Pred ( R , A , y ) = Pred ( R , A , z ) ) |
|
| 7 | 6 | reseq2d | |- ( y = z -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , z ) ) ) |
| 8 | 5 7 | oveq12d | |- ( y = z -> ( y H ( F |` Pred ( R , A , y ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) |
| 9 | 4 8 | eqeq12d | |- ( y = z -> ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) <-> ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) ) |
| 10 | fveq2 | |- ( y = z -> ( G ` y ) = ( G ` z ) ) |
|
| 11 | 6 | reseq2d | |- ( y = z -> ( G |` Pred ( R , A , y ) ) = ( G |` Pred ( R , A , z ) ) ) |
| 12 | 5 11 | oveq12d | |- ( y = z -> ( y H ( G |` Pred ( R , A , y ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( y = z -> ( ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) <-> ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) |
| 14 | 9 13 | anbi12d | |- ( y = z -> ( ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) ) |
| 15 | 14 | rspcva | |- ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) |
| 16 | eqtr3 | |- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( F ` z ) ) |
|
| 17 | 16 | eqcomd | |- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
| 18 | eqtr3 | |- ( ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) |
|
| 19 | 18 | ex | |- ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
| 20 | 17 19 | syl | |- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
| 21 | 20 | expimpd | |- ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) -> ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
| 22 | predss | |- Pred ( R , A , z ) C_ A |
|
| 23 | fvreseq | |- ( ( ( F Fn A /\ G Fn A ) /\ Pred ( R , A , z ) C_ A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
|
| 24 | 22 23 | mpan2 | |- ( ( F Fn A /\ G Fn A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
| 25 | 24 | biimpar | |- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) ) |
| 26 | 25 | oveq2d | |- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( F |` Pred ( R , A , z ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
| 27 | 26 | eqcomd | |- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) |
| 28 | 21 27 | syl11 | |- ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F ` z ) = ( G ` z ) ) ) |
| 29 | 28 | expd | |- ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 30 | 15 29 | syl | |- ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 31 | 30 | ex | |- ( z e. A -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) |
| 32 | 31 | com23 | |- ( z e. A -> ( ( F Fn A /\ G Fn A ) -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) |
| 33 | 32 | impd | |- ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 34 | 3 33 | biimtrrid | |- ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 35 | 34 | a2d | |- ( z e. A -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 36 | 1 35 | syl5 | |- ( z e. A -> ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 37 | fveq2 | |- ( z = w -> ( F ` z ) = ( F ` w ) ) |
|
| 38 | fveq2 | |- ( z = w -> ( G ` z ) = ( G ` w ) ) |
|
| 39 | 37 38 | eqeq12d | |- ( z = w -> ( ( F ` z ) = ( G ` z ) <-> ( F ` w ) = ( G ` w ) ) ) |
| 40 | 39 | imbi2d | |- ( z = w -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) <-> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) ) ) |
| 41 | 36 40 | frins2 | |- ( ( R Fr A /\ R Se A ) -> A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
| 42 | rsp | |- ( A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
|
| 43 | 41 42 | syl | |- ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
| 44 | 43 | com3r | |- ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
| 45 | 44 | an4s | |- ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
| 46 | 45 | com12 | |- ( ( R Fr A /\ R Se A ) -> ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
| 47 | 46 | 3impib | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) |
| 48 | 47 | ralrimiv | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. z e. A ( F ` z ) = ( G ` z ) ) |
| 49 | eqid | |- A = A |
|
| 50 | 48 49 | jctil | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) |
| 51 | eqfnfv2 | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
|
| 52 | 51 | ad2ant2r | |- ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
| 53 | 52 | 3adant1 | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
| 54 | 50 53 | mpbird | |- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> F = G ) |