This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. An acceptable function is a function. (Contributed by Paul Chapman, 21-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrlem1.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| Assertion | frrlem2 | |- ( g e. B -> Fun g ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem1.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | 1 | frrlem1 | |- B = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) } |
| 3 | 2 | eqabri | |- ( g e. B <-> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) ) |
| 4 | fnfun | |- ( g Fn z -> Fun g ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) -> Fun g ) |
| 6 | 5 | exlimiv | |- ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) -> Fun g ) |
| 7 | 3 6 | sylbi | |- ( g e. B -> Fun g ) |