This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup.m | |- M = ( freeMnd ` I ) |
|
| frmdup.b | |- B = ( Base ` G ) |
||
| frmdup.e | |- E = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) |
||
| frmdup.g | |- ( ph -> G e. Mnd ) |
||
| frmdup.i | |- ( ph -> I e. X ) |
||
| frmdup.a | |- ( ph -> A : I --> B ) |
||
| frmdup2.u | |- U = ( varFMnd ` I ) |
||
| frmdup2.y | |- ( ph -> Y e. I ) |
||
| Assertion | frmdup2 | |- ( ph -> ( E ` ( U ` Y ) ) = ( A ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdup.b | |- B = ( Base ` G ) |
|
| 3 | frmdup.e | |- E = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) |
|
| 4 | frmdup.g | |- ( ph -> G e. Mnd ) |
|
| 5 | frmdup.i | |- ( ph -> I e. X ) |
|
| 6 | frmdup.a | |- ( ph -> A : I --> B ) |
|
| 7 | frmdup2.u | |- U = ( varFMnd ` I ) |
|
| 8 | frmdup2.y | |- ( ph -> Y e. I ) |
|
| 9 | 7 | vrmdval | |- ( ( I e. X /\ Y e. I ) -> ( U ` Y ) = <" Y "> ) |
| 10 | 5 8 9 | syl2anc | |- ( ph -> ( U ` Y ) = <" Y "> ) |
| 11 | 10 | fveq2d | |- ( ph -> ( E ` ( U ` Y ) ) = ( E ` <" Y "> ) ) |
| 12 | 8 | s1cld | |- ( ph -> <" Y "> e. Word I ) |
| 13 | coeq2 | |- ( x = <" Y "> -> ( A o. x ) = ( A o. <" Y "> ) ) |
|
| 14 | 13 | oveq2d | |- ( x = <" Y "> -> ( G gsum ( A o. x ) ) = ( G gsum ( A o. <" Y "> ) ) ) |
| 15 | ovex | |- ( G gsum ( A o. x ) ) e. _V |
|
| 16 | 14 3 15 | fvmpt3i | |- ( <" Y "> e. Word I -> ( E ` <" Y "> ) = ( G gsum ( A o. <" Y "> ) ) ) |
| 17 | 12 16 | syl | |- ( ph -> ( E ` <" Y "> ) = ( G gsum ( A o. <" Y "> ) ) ) |
| 18 | s1co | |- ( ( Y e. I /\ A : I --> B ) -> ( A o. <" Y "> ) = <" ( A ` Y ) "> ) |
|
| 19 | 8 6 18 | syl2anc | |- ( ph -> ( A o. <" Y "> ) = <" ( A ` Y ) "> ) |
| 20 | 19 | oveq2d | |- ( ph -> ( G gsum ( A o. <" Y "> ) ) = ( G gsum <" ( A ` Y ) "> ) ) |
| 21 | 6 8 | ffvelcdmd | |- ( ph -> ( A ` Y ) e. B ) |
| 22 | 2 | gsumws1 | |- ( ( A ` Y ) e. B -> ( G gsum <" ( A ` Y ) "> ) = ( A ` Y ) ) |
| 23 | 21 22 | syl | |- ( ph -> ( G gsum <" ( A ` Y ) "> ) = ( A ` Y ) ) |
| 24 | 17 20 23 | 3eqtrd | |- ( ph -> ( E ` <" Y "> ) = ( A ` Y ) ) |
| 25 | 11 24 | eqtrd | |- ( ph -> ( E ` ( U ` Y ) ) = ( A ` Y ) ) |