This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frmdup3 . (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup3.m | |- M = ( freeMnd ` I ) |
|
| frmdup3.b | |- B = ( Base ` G ) |
||
| frmdup3.u | |- U = ( varFMnd ` I ) |
||
| Assertion | frmdup3lem | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> F = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdup3.b | |- B = ( Base ` G ) |
|
| 3 | frmdup3.u | |- U = ( varFMnd ` I ) |
|
| 4 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 5 | 4 2 | mhmf | |- ( F e. ( M MndHom G ) -> F : ( Base ` M ) --> B ) |
| 6 | 5 | ad2antrl | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> F : ( Base ` M ) --> B ) |
| 7 | 1 4 | frmdbas | |- ( I e. V -> ( Base ` M ) = Word I ) |
| 8 | 7 | 3ad2ant2 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( Base ` M ) = Word I ) |
| 9 | 8 | adantr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> ( Base ` M ) = Word I ) |
| 10 | 9 | feq2d | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> ( F : ( Base ` M ) --> B <-> F : Word I --> B ) ) |
| 11 | 6 10 | mpbid | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> F : Word I --> B ) |
| 12 | 11 | feqmptd | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> F = ( x e. Word I |-> ( F ` x ) ) ) |
| 13 | simplrl | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> F e. ( M MndHom G ) ) |
|
| 14 | simpr | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> x e. Word I ) |
|
| 15 | 3 | vrmdf | |- ( I e. V -> U : I --> Word I ) |
| 16 | 15 | 3ad2ant2 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> U : I --> Word I ) |
| 17 | 8 | feq3d | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( U : I --> ( Base ` M ) <-> U : I --> Word I ) ) |
| 18 | 16 17 | mpbird | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> U : I --> ( Base ` M ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> U : I --> ( Base ` M ) ) |
| 20 | wrdco | |- ( ( x e. Word I /\ U : I --> ( Base ` M ) ) -> ( U o. x ) e. Word ( Base ` M ) ) |
|
| 21 | 14 19 20 | syl2anc | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( U o. x ) e. Word ( Base ` M ) ) |
| 22 | 4 | gsumwmhm | |- ( ( F e. ( M MndHom G ) /\ ( U o. x ) e. Word ( Base ` M ) ) -> ( F ` ( M gsum ( U o. x ) ) ) = ( G gsum ( F o. ( U o. x ) ) ) ) |
| 23 | 13 21 22 | syl2anc | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( F ` ( M gsum ( U o. x ) ) ) = ( G gsum ( F o. ( U o. x ) ) ) ) |
| 24 | simpll2 | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> I e. V ) |
|
| 25 | 1 3 | frmdgsum | |- ( ( I e. V /\ x e. Word I ) -> ( M gsum ( U o. x ) ) = x ) |
| 26 | 24 14 25 | syl2anc | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( M gsum ( U o. x ) ) = x ) |
| 27 | 26 | fveq2d | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( F ` ( M gsum ( U o. x ) ) ) = ( F ` x ) ) |
| 28 | coass | |- ( ( F o. U ) o. x ) = ( F o. ( U o. x ) ) |
|
| 29 | simplrr | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( F o. U ) = A ) |
|
| 30 | 29 | coeq1d | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( ( F o. U ) o. x ) = ( A o. x ) ) |
| 31 | 28 30 | eqtr3id | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( F o. ( U o. x ) ) = ( A o. x ) ) |
| 32 | 31 | oveq2d | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( G gsum ( F o. ( U o. x ) ) ) = ( G gsum ( A o. x ) ) ) |
| 33 | 23 27 32 | 3eqtr3d | |- ( ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) /\ x e. Word I ) -> ( F ` x ) = ( G gsum ( A o. x ) ) ) |
| 34 | 33 | mpteq2dva | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> ( x e. Word I |-> ( F ` x ) ) = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) |
| 35 | 12 34 | eqtrd | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( F e. ( M MndHom G ) /\ ( F o. U ) = A ) ) -> F = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) |