This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqreu.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| Assertion | eqreu | |- ( ( B e. A /\ ps /\ A. x e. A ( ph -> x = B ) ) -> E! x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreu.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 2 | ralbiim | |- ( A. x e. A ( ph <-> x = B ) <-> ( A. x e. A ( ph -> x = B ) /\ A. x e. A ( x = B -> ph ) ) ) |
|
| 3 | 1 | ceqsralv | |- ( B e. A -> ( A. x e. A ( x = B -> ph ) <-> ps ) ) |
| 4 | 3 | anbi2d | |- ( B e. A -> ( ( A. x e. A ( ph -> x = B ) /\ A. x e. A ( x = B -> ph ) ) <-> ( A. x e. A ( ph -> x = B ) /\ ps ) ) ) |
| 5 | 2 4 | bitrid | |- ( B e. A -> ( A. x e. A ( ph <-> x = B ) <-> ( A. x e. A ( ph -> x = B ) /\ ps ) ) ) |
| 6 | reu6i | |- ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E! x e. A ph ) |
|
| 7 | 6 | ex | |- ( B e. A -> ( A. x e. A ( ph <-> x = B ) -> E! x e. A ph ) ) |
| 8 | 5 7 | sylbird | |- ( B e. A -> ( ( A. x e. A ( ph -> x = B ) /\ ps ) -> E! x e. A ph ) ) |
| 9 | 8 | 3impib | |- ( ( B e. A /\ A. x e. A ( ph -> x = B ) /\ ps ) -> E! x e. A ph ) |
| 10 | 9 | 3com23 | |- ( ( B e. A /\ ps /\ A. x e. A ( ph -> x = B ) ) -> E! x e. A ph ) |