This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| frlmplusgvalb.b | |- B = ( Base ` F ) |
||
| frlmplusgvalb.i | |- ( ph -> I e. W ) |
||
| frlmplusgvalb.x | |- ( ph -> X e. B ) |
||
| frlmplusgvalb.z | |- ( ph -> Z e. B ) |
||
| frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
||
| frlmvscavalb.k | |- K = ( Base ` R ) |
||
| frlmvscavalb.a | |- ( ph -> A e. K ) |
||
| frlmvscavalb.v | |- .xb = ( .s ` F ) |
||
| frlmvscavalb.t | |- .x. = ( .r ` R ) |
||
| Assertion | frlmvscavalb | |- ( ph -> ( Z = ( A .xb X ) <-> A. i e. I ( Z ` i ) = ( A .x. ( X ` i ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmplusgvalb.b | |- B = ( Base ` F ) |
|
| 3 | frlmplusgvalb.i | |- ( ph -> I e. W ) |
|
| 4 | frlmplusgvalb.x | |- ( ph -> X e. B ) |
|
| 5 | frlmplusgvalb.z | |- ( ph -> Z e. B ) |
|
| 6 | frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
|
| 7 | frlmvscavalb.k | |- K = ( Base ` R ) |
|
| 8 | frlmvscavalb.a | |- ( ph -> A e. K ) |
|
| 9 | frlmvscavalb.v | |- .xb = ( .s ` F ) |
|
| 10 | frlmvscavalb.t | |- .x. = ( .r ` R ) |
|
| 11 | 1 7 2 | frlmbasmap | |- ( ( I e. W /\ Z e. B ) -> Z e. ( K ^m I ) ) |
| 12 | 3 5 11 | syl2anc | |- ( ph -> Z e. ( K ^m I ) ) |
| 13 | 7 | fvexi | |- K e. _V |
| 14 | 13 | a1i | |- ( ph -> K e. _V ) |
| 15 | 14 3 | elmapd | |- ( ph -> ( Z e. ( K ^m I ) <-> Z : I --> K ) ) |
| 16 | 12 15 | mpbid | |- ( ph -> Z : I --> K ) |
| 17 | 16 | ffnd | |- ( ph -> Z Fn I ) |
| 18 | 1 | frlmlmod | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
| 19 | 6 3 18 | syl2anc | |- ( ph -> F e. LMod ) |
| 20 | 8 7 | eleqtrdi | |- ( ph -> A e. ( Base ` R ) ) |
| 21 | 1 | frlmsca | |- ( ( R e. Ring /\ I e. W ) -> R = ( Scalar ` F ) ) |
| 22 | 6 3 21 | syl2anc | |- ( ph -> R = ( Scalar ` F ) ) |
| 23 | 22 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
| 24 | 20 23 | eleqtrd | |- ( ph -> A e. ( Base ` ( Scalar ` F ) ) ) |
| 25 | eqid | |- ( Scalar ` F ) = ( Scalar ` F ) |
|
| 26 | eqid | |- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
|
| 27 | 2 25 9 26 | lmodvscl | |- ( ( F e. LMod /\ A e. ( Base ` ( Scalar ` F ) ) /\ X e. B ) -> ( A .xb X ) e. B ) |
| 28 | 19 24 4 27 | syl3anc | |- ( ph -> ( A .xb X ) e. B ) |
| 29 | 1 7 2 | frlmbasmap | |- ( ( I e. W /\ ( A .xb X ) e. B ) -> ( A .xb X ) e. ( K ^m I ) ) |
| 30 | 3 28 29 | syl2anc | |- ( ph -> ( A .xb X ) e. ( K ^m I ) ) |
| 31 | 14 3 | elmapd | |- ( ph -> ( ( A .xb X ) e. ( K ^m I ) <-> ( A .xb X ) : I --> K ) ) |
| 32 | 30 31 | mpbid | |- ( ph -> ( A .xb X ) : I --> K ) |
| 33 | 32 | ffnd | |- ( ph -> ( A .xb X ) Fn I ) |
| 34 | eqfnfv | |- ( ( Z Fn I /\ ( A .xb X ) Fn I ) -> ( Z = ( A .xb X ) <-> A. i e. I ( Z ` i ) = ( ( A .xb X ) ` i ) ) ) |
|
| 35 | 17 33 34 | syl2anc | |- ( ph -> ( Z = ( A .xb X ) <-> A. i e. I ( Z ` i ) = ( ( A .xb X ) ` i ) ) ) |
| 36 | 3 | adantr | |- ( ( ph /\ i e. I ) -> I e. W ) |
| 37 | 8 | adantr | |- ( ( ph /\ i e. I ) -> A e. K ) |
| 38 | 4 | adantr | |- ( ( ph /\ i e. I ) -> X e. B ) |
| 39 | simpr | |- ( ( ph /\ i e. I ) -> i e. I ) |
|
| 40 | 1 2 7 36 37 38 39 9 10 | frlmvscaval | |- ( ( ph /\ i e. I ) -> ( ( A .xb X ) ` i ) = ( A .x. ( X ` i ) ) ) |
| 41 | 40 | eqeq2d | |- ( ( ph /\ i e. I ) -> ( ( Z ` i ) = ( ( A .xb X ) ` i ) <-> ( Z ` i ) = ( A .x. ( X ` i ) ) ) ) |
| 42 | 41 | ralbidva | |- ( ph -> ( A. i e. I ( Z ` i ) = ( ( A .xb X ) ` i ) <-> A. i e. I ( Z ` i ) = ( A .x. ( X ` i ) ) ) ) |
| 43 | 35 42 | bitrd | |- ( ph -> ( Z = ( A .xb X ) <-> A. i e. I ( Z ` i ) = ( A .x. ( X ` i ) ) ) ) |