This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvscaval.y | |- Y = ( R freeLMod I ) |
|
| frlmvscaval.b | |- B = ( Base ` Y ) |
||
| frlmvscaval.k | |- K = ( Base ` R ) |
||
| frlmvscaval.i | |- ( ph -> I e. W ) |
||
| frlmvscaval.a | |- ( ph -> A e. K ) |
||
| frlmvscaval.x | |- ( ph -> X e. B ) |
||
| frlmvscaval.j | |- ( ph -> J e. I ) |
||
| frlmvscaval.v | |- .xb = ( .s ` Y ) |
||
| frlmvscaval.t | |- .x. = ( .r ` R ) |
||
| Assertion | frlmvscaval | |- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscaval.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmvscaval.b | |- B = ( Base ` Y ) |
|
| 3 | frlmvscaval.k | |- K = ( Base ` R ) |
|
| 4 | frlmvscaval.i | |- ( ph -> I e. W ) |
|
| 5 | frlmvscaval.a | |- ( ph -> A e. K ) |
|
| 6 | frlmvscaval.x | |- ( ph -> X e. B ) |
|
| 7 | frlmvscaval.j | |- ( ph -> J e. I ) |
|
| 8 | frlmvscaval.v | |- .xb = ( .s ` Y ) |
|
| 9 | frlmvscaval.t | |- .x. = ( .r ` R ) |
|
| 10 | 1 2 3 4 5 6 8 9 | frlmvscafval | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( ( A .xb X ) ` J ) = ( ( ( I X. { A } ) oF .x. X ) ` J ) ) |
| 12 | fnconstg | |- ( A e. K -> ( I X. { A } ) Fn I ) |
|
| 13 | 5 12 | syl | |- ( ph -> ( I X. { A } ) Fn I ) |
| 14 | 1 3 2 | frlmbasf | |- ( ( I e. W /\ X e. B ) -> X : I --> K ) |
| 15 | 4 6 14 | syl2anc | |- ( ph -> X : I --> K ) |
| 16 | 15 | ffnd | |- ( ph -> X Fn I ) |
| 17 | fnfvof | |- ( ( ( ( I X. { A } ) Fn I /\ X Fn I ) /\ ( I e. W /\ J e. I ) ) -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) ) |
|
| 18 | 13 16 4 7 17 | syl22anc | |- ( ph -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) ) |
| 19 | fvconst2g | |- ( ( A e. K /\ J e. I ) -> ( ( I X. { A } ) ` J ) = A ) |
|
| 20 | 5 7 19 | syl2anc | |- ( ph -> ( ( I X. { A } ) ` J ) = A ) |
| 21 | 20 | oveq1d | |- ( ph -> ( ( ( I X. { A } ) ` J ) .x. ( X ` J ) ) = ( A .x. ( X ` J ) ) ) |
| 22 | 11 18 21 | 3eqtrd | |- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |