This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| frlmplusgvalb.b | |- B = ( Base ` F ) |
||
| frlmplusgvalb.i | |- ( ph -> I e. W ) |
||
| frlmplusgvalb.x | |- ( ph -> X e. B ) |
||
| frlmplusgvalb.z | |- ( ph -> Z e. B ) |
||
| frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
||
| frlmvscavalb.k | |- K = ( Base ` R ) |
||
| frlmvscavalb.a | |- ( ph -> A e. K ) |
||
| frlmvscavalb.v | |- .xb = ( .s ` F ) |
||
| frlmvscavalb.t | |- .x. = ( .r ` R ) |
||
| frlmvplusgscavalb.y | |- ( ph -> Y e. B ) |
||
| frlmvplusgscavalb.a | |- .+ = ( +g ` R ) |
||
| frlmvplusgscavalb.p | |- .+b = ( +g ` F ) |
||
| frlmvplusgscavalb.c | |- ( ph -> C e. K ) |
||
| Assertion | frlmvplusgscavalb | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmplusgvalb.b | |- B = ( Base ` F ) |
|
| 3 | frlmplusgvalb.i | |- ( ph -> I e. W ) |
|
| 4 | frlmplusgvalb.x | |- ( ph -> X e. B ) |
|
| 5 | frlmplusgvalb.z | |- ( ph -> Z e. B ) |
|
| 6 | frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
|
| 7 | frlmvscavalb.k | |- K = ( Base ` R ) |
|
| 8 | frlmvscavalb.a | |- ( ph -> A e. K ) |
|
| 9 | frlmvscavalb.v | |- .xb = ( .s ` F ) |
|
| 10 | frlmvscavalb.t | |- .x. = ( .r ` R ) |
|
| 11 | frlmvplusgscavalb.y | |- ( ph -> Y e. B ) |
|
| 12 | frlmvplusgscavalb.a | |- .+ = ( +g ` R ) |
|
| 13 | frlmvplusgscavalb.p | |- .+b = ( +g ` F ) |
|
| 14 | frlmvplusgscavalb.c | |- ( ph -> C e. K ) |
|
| 15 | 1 | frlmlmod | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
| 16 | 6 3 15 | syl2anc | |- ( ph -> F e. LMod ) |
| 17 | 8 7 | eleqtrdi | |- ( ph -> A e. ( Base ` R ) ) |
| 18 | 1 | frlmsca | |- ( ( R e. Ring /\ I e. W ) -> R = ( Scalar ` F ) ) |
| 19 | 6 3 18 | syl2anc | |- ( ph -> R = ( Scalar ` F ) ) |
| 20 | 19 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
| 21 | 17 20 | eleqtrd | |- ( ph -> A e. ( Base ` ( Scalar ` F ) ) ) |
| 22 | eqid | |- ( Scalar ` F ) = ( Scalar ` F ) |
|
| 23 | eqid | |- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
|
| 24 | 2 22 9 23 | lmodvscl | |- ( ( F e. LMod /\ A e. ( Base ` ( Scalar ` F ) ) /\ X e. B ) -> ( A .xb X ) e. B ) |
| 25 | 16 21 4 24 | syl3anc | |- ( ph -> ( A .xb X ) e. B ) |
| 26 | 14 7 | eleqtrdi | |- ( ph -> C e. ( Base ` R ) ) |
| 27 | 26 20 | eleqtrd | |- ( ph -> C e. ( Base ` ( Scalar ` F ) ) ) |
| 28 | 2 22 9 23 | lmodvscl | |- ( ( F e. LMod /\ C e. ( Base ` ( Scalar ` F ) ) /\ Y e. B ) -> ( C .xb Y ) e. B ) |
| 29 | 16 27 11 28 | syl3anc | |- ( ph -> ( C .xb Y ) e. B ) |
| 30 | 1 2 3 25 5 6 29 12 13 | frlmplusgvalb | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) ) ) |
| 31 | 3 | adantr | |- ( ( ph /\ i e. I ) -> I e. W ) |
| 32 | 8 | adantr | |- ( ( ph /\ i e. I ) -> A e. K ) |
| 33 | 4 | adantr | |- ( ( ph /\ i e. I ) -> X e. B ) |
| 34 | simpr | |- ( ( ph /\ i e. I ) -> i e. I ) |
|
| 35 | 1 2 7 31 32 33 34 9 10 | frlmvscaval | |- ( ( ph /\ i e. I ) -> ( ( A .xb X ) ` i ) = ( A .x. ( X ` i ) ) ) |
| 36 | 14 | adantr | |- ( ( ph /\ i e. I ) -> C e. K ) |
| 37 | 11 | adantr | |- ( ( ph /\ i e. I ) -> Y e. B ) |
| 38 | 1 2 7 31 36 37 34 9 10 | frlmvscaval | |- ( ( ph /\ i e. I ) -> ( ( C .xb Y ) ` i ) = ( C .x. ( Y ` i ) ) ) |
| 39 | 35 38 | oveq12d | |- ( ( ph /\ i e. I ) -> ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) |
| 40 | 39 | eqeq2d | |- ( ( ph /\ i e. I ) -> ( ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) <-> ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) |
| 41 | 40 | ralbidva | |- ( ph -> ( A. i e. I ( Z ` i ) = ( ( ( A .xb X ) ` i ) .+ ( ( C .xb Y ) ` i ) ) <-> A. i e. I ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) |
| 42 | 30 41 | bitrd | |- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A .x. ( X ` i ) ) .+ ( C .x. ( Y ` i ) ) ) ) ) |