This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgvalb.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmplusgvalb.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| frlmplusgvalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmplusgvalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| frlmplusgvalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| frlmplusgvalb.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| frlmvscavalb.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| frlmvscavalb.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘ 𝐹 ) | ||
| frlmvscavalb.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | frlmvscavalb | ⊢ ( 𝜑 → ( 𝑍 = ( 𝐴 ∙ 𝑋 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmplusgvalb.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | frlmplusgvalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | frlmplusgvalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | frlmplusgvalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 6 | frlmplusgvalb.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | frlmvscavalb.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 8 | frlmvscavalb.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 9 | frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘ 𝐹 ) | |
| 10 | frlmvscavalb.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 11 | 1 7 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 12 | 3 5 11 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 13 | 7 | fvexi | ⊢ 𝐾 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 15 | 14 3 | elmapd | ⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐾 ↑m 𝐼 ) ↔ 𝑍 : 𝐼 ⟶ 𝐾 ) ) |
| 16 | 12 15 | mpbid | ⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ 𝐾 ) |
| 17 | 16 | ffnd | ⊢ ( 𝜑 → 𝑍 Fn 𝐼 ) |
| 18 | 1 | frlmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
| 19 | 6 3 18 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
| 20 | 8 7 | eleqtrdi | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 21 | 1 | frlmsca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 22 | 6 3 21 | syl2anc | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 24 | 20 23 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 25 | eqid | ⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) | |
| 26 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) | |
| 27 | 2 25 9 26 | lmodvscl | ⊢ ( ( 𝐹 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ∙ 𝑋 ) ∈ 𝐵 ) |
| 28 | 19 24 4 27 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) ∈ 𝐵 ) |
| 29 | 1 7 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝐴 ∙ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 ∙ 𝑋 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 30 | 3 28 29 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 31 | 14 3 | elmapd | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ∈ ( 𝐾 ↑m 𝐼 ) ↔ ( 𝐴 ∙ 𝑋 ) : 𝐼 ⟶ 𝐾 ) ) |
| 32 | 30 31 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) : 𝐼 ⟶ 𝐾 ) |
| 33 | 32 | ffnd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) Fn 𝐼 ) |
| 34 | eqfnfv | ⊢ ( ( 𝑍 Fn 𝐼 ∧ ( 𝐴 ∙ 𝑋 ) Fn 𝐼 ) → ( 𝑍 = ( 𝐴 ∙ 𝑋 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) ) ) | |
| 35 | 17 33 34 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 = ( 𝐴 ∙ 𝑋 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) ) ) |
| 36 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 37 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐴 ∈ 𝐾 ) |
| 38 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) |
| 39 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) | |
| 40 | 1 2 7 36 37 38 39 9 10 | frlmvscaval | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) |
| 41 | 40 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) ↔ ( 𝑍 ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) ) |
| 42 | 41 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) ) |
| 43 | 35 42 | bitrd | ⊢ ( 𝜑 → ( 𝑍 = ( 𝐴 ∙ 𝑋 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) ) |