This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlmpws.b | |- B = ( Base ` F ) |
||
| frlmlss.u | |- U = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) |
||
| Assertion | frlmlss | |- ( ( R e. Ring /\ I e. W ) -> B e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmpws.b | |- B = ( Base ` F ) |
|
| 3 | frlmlss.u | |- U = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 4 | 1 | frlmval | |- ( ( R e. Ring /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 5 | 4 | fveq2d | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 6 | 2 5 | eqtrid | |- ( ( R e. Ring /\ I e. W ) -> B = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 7 | simpr | |- ( ( R e. Ring /\ I e. W ) -> I e. W ) |
|
| 8 | simpl | |- ( ( R e. Ring /\ I e. W ) -> R e. Ring ) |
|
| 9 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 10 | 9 | adantr | |- ( ( R e. Ring /\ I e. W ) -> ( ringLMod ` R ) e. LMod ) |
| 11 | fconst6g | |- ( ( ringLMod ` R ) e. LMod -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
|
| 12 | 10 11 | syl | |- ( ( R e. Ring /\ I e. W ) -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
| 13 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 14 | 13 | fvconst2 | |- ( i e. I -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 15 | 14 | adantl | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 16 | 15 | fveq2d | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = ( Scalar ` ( ringLMod ` R ) ) ) |
| 17 | rlmsca | |- ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 18 | 17 | ad2antrr | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 19 | 16 18 | eqtr4d | |- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = R ) |
| 20 | eqid | |- ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |
|
| 21 | eqid | |- ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
|
| 22 | eqid | |- ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
|
| 23 | 7 8 12 19 20 21 22 | dsmmlss | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 24 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 25 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 26 | 24 25 | pwsval | |- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 27 | 13 26 | mpan | |- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 28 | 27 | adantl | |- ( ( R e. Ring /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 29 | 17 | eqcomd | |- ( R e. Ring -> ( Scalar ` ( ringLMod ` R ) ) = R ) |
| 30 | 29 | adantr | |- ( ( R e. Ring /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = R ) |
| 31 | 30 | oveq1d | |- ( ( R e. Ring /\ I e. W ) -> ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 32 | 28 31 | eqtr2d | |- ( ( R e. Ring /\ I e. W ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) |
| 33 | 32 | fveq2d | |- ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 34 | 33 3 | eqtr4di | |- ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = U ) |
| 35 | 23 34 | eleqtrd | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. U ) |
| 36 | 6 35 | eqeltrd | |- ( ( R e. Ring /\ I e. W ) -> B e. U ) |