This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite free module is a power of the ring module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | |- F = ( R freeLMod I ) |
|
| Assertion | frlmpwsfi | |- ( ( R e. V /\ I e. Fin ) -> F = ( ( ringLMod ` R ) ^s I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 3 | fnconstg | |- ( ( ringLMod ` R ) e. _V -> ( I X. { ( ringLMod ` R ) } ) Fn I ) |
|
| 4 | 2 3 | ax-mp | |- ( I X. { ( ringLMod ` R ) } ) Fn I |
| 5 | dsmmfi | |- ( ( ( I X. { ( ringLMod ` R ) } ) Fn I /\ I e. Fin ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
|
| 6 | 4 5 | mpan | |- ( I e. Fin -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 7 | 6 | adantl | |- ( ( R e. V /\ I e. Fin ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 8 | rlmsca | |- ( R e. V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 9 | 8 | adantr | |- ( ( R e. V /\ I e. Fin ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 10 | 9 | oveq1d | |- ( ( R e. V /\ I e. Fin ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 11 | 7 10 | eqtrd | |- ( ( R e. V /\ I e. Fin ) -> ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 12 | 1 | frlmval | |- ( ( R e. V /\ I e. Fin ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 13 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 14 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 15 | 13 14 | pwsval | |- ( ( ( ringLMod ` R ) e. _V /\ I e. Fin ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 16 | 2 15 | mpan | |- ( I e. Fin -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 17 | 16 | adantl | |- ( ( R e. V /\ I e. Fin ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 18 | 11 12 17 | 3eqtr4d | |- ( ( R e. V /\ I e. Fin ) -> F = ( ( ringLMod ` R ) ^s I ) ) |