This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | |- F = ( R freeLMod I ) |
|
| Assertion | frlmval | |- ( ( R e. V /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | elex | |- ( R e. V -> R e. _V ) |
|
| 3 | elex | |- ( I e. W -> I e. _V ) |
|
| 4 | id | |- ( r = R -> r = R ) |
|
| 5 | fveq2 | |- ( r = R -> ( ringLMod ` r ) = ( ringLMod ` R ) ) |
|
| 6 | 5 | sneqd | |- ( r = R -> { ( ringLMod ` r ) } = { ( ringLMod ` R ) } ) |
| 7 | 6 | xpeq2d | |- ( r = R -> ( i X. { ( ringLMod ` r ) } ) = ( i X. { ( ringLMod ` R ) } ) ) |
| 8 | 4 7 | oveq12d | |- ( r = R -> ( r (+)m ( i X. { ( ringLMod ` r ) } ) ) = ( R (+)m ( i X. { ( ringLMod ` R ) } ) ) ) |
| 9 | xpeq1 | |- ( i = I -> ( i X. { ( ringLMod ` R ) } ) = ( I X. { ( ringLMod ` R ) } ) ) |
|
| 10 | 9 | oveq2d | |- ( i = I -> ( R (+)m ( i X. { ( ringLMod ` R ) } ) ) = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 11 | df-frlm | |- freeLMod = ( r e. _V , i e. _V |-> ( r (+)m ( i X. { ( ringLMod ` r ) } ) ) ) |
|
| 12 | ovex | |- ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) e. _V |
|
| 13 | 8 10 11 12 | ovmpo | |- ( ( R e. _V /\ I e. _V ) -> ( R freeLMod I ) = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 14 | 2 3 13 | syl2an | |- ( ( R e. V /\ I e. W ) -> ( R freeLMod I ) = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 15 | 1 14 | eqtrid | |- ( ( R e. V /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |