This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodeq0g.kph | |- F/ k ph |
|
| fprodeq0g.a | |- ( ph -> A e. Fin ) |
||
| fprodeq0g.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprodeq0g.c | |- ( ph -> C e. A ) |
||
| fprodeq0g.b0 | |- ( ( ph /\ k = C ) -> B = 0 ) |
||
| Assertion | fprodeq0g | |- ( ph -> prod_ k e. A B = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodeq0g.kph | |- F/ k ph |
|
| 2 | fprodeq0g.a | |- ( ph -> A e. Fin ) |
|
| 3 | fprodeq0g.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | fprodeq0g.c | |- ( ph -> C e. A ) |
|
| 5 | fprodeq0g.b0 | |- ( ( ph /\ k = C ) -> B = 0 ) |
|
| 6 | nfcvd | |- ( ph -> F/_ k 0 ) |
|
| 7 | 1 6 2 3 4 5 | fprodsplit1f | |- ( ph -> prod_ k e. A B = ( 0 x. prod_ k e. ( A \ { C } ) B ) ) |
| 8 | diffi | |- ( A e. Fin -> ( A \ { C } ) e. Fin ) |
|
| 9 | 2 8 | syl | |- ( ph -> ( A \ { C } ) e. Fin ) |
| 10 | eldifi | |- ( k e. ( A \ { C } ) -> k e. A ) |
|
| 11 | 10 3 | sylan2 | |- ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) |
| 12 | 1 9 11 | fprodclf | |- ( ph -> prod_ k e. ( A \ { C } ) B e. CC ) |
| 13 | 12 | mul02d | |- ( ph -> ( 0 x. prod_ k e. ( A \ { C } ) B ) = 0 ) |
| 14 | 7 13 | eqtrd | |- ( ph -> prod_ k e. A B = 0 ) |