This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite product closure lemma. A version of fprodcllem using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcllemf.ph | |- F/ k ph |
|
| fprodcllemf.s | |- ( ph -> S C_ CC ) |
||
| fprodcllemf.xy | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
||
| fprodcllemf.a | |- ( ph -> A e. Fin ) |
||
| fprodcllemf.b | |- ( ( ph /\ k e. A ) -> B e. S ) |
||
| fprodcllemf.1 | |- ( ph -> 1 e. S ) |
||
| Assertion | fprodcllemf | |- ( ph -> prod_ k e. A B e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcllemf.ph | |- F/ k ph |
|
| 2 | fprodcllemf.s | |- ( ph -> S C_ CC ) |
|
| 3 | fprodcllemf.xy | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
|
| 4 | fprodcllemf.a | |- ( ph -> A e. Fin ) |
|
| 5 | fprodcllemf.b | |- ( ( ph /\ k e. A ) -> B e. S ) |
|
| 6 | fprodcllemf.1 | |- ( ph -> 1 e. S ) |
|
| 7 | nfcv | |- F/_ j B |
|
| 8 | nfcsb1v | |- F/_ k [_ j / k ]_ B |
|
| 9 | csbeq1a | |- ( k = j -> B = [_ j / k ]_ B ) |
|
| 10 | 7 8 9 | cbvprodi | |- prod_ k e. A B = prod_ j e. A [_ j / k ]_ B |
| 11 | 5 | ex | |- ( ph -> ( k e. A -> B e. S ) ) |
| 12 | 1 11 | ralrimi | |- ( ph -> A. k e. A B e. S ) |
| 13 | rspsbc | |- ( j e. A -> ( A. k e. A B e. S -> [. j / k ]. B e. S ) ) |
|
| 14 | 12 13 | mpan9 | |- ( ( ph /\ j e. A ) -> [. j / k ]. B e. S ) |
| 15 | sbcel1g | |- ( j e. _V -> ( [. j / k ]. B e. S <-> [_ j / k ]_ B e. S ) ) |
|
| 16 | 15 | elv | |- ( [. j / k ]. B e. S <-> [_ j / k ]_ B e. S ) |
| 17 | 14 16 | sylib | |- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. S ) |
| 18 | 2 3 4 17 6 | fprodcllem | |- ( ph -> prod_ j e. A [_ j / k ]_ B e. S ) |
| 19 | 10 18 | eqeltrid | |- ( ph -> prod_ k e. A B e. S ) |