This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fo00 | |- ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn | |- ( F : (/) -onto-> A -> F Fn (/) ) |
|
| 2 | fn0 | |- ( F Fn (/) <-> F = (/) ) |
|
| 3 | f10 | |- (/) : (/) -1-1-> A |
|
| 4 | f1eq1 | |- ( F = (/) -> ( F : (/) -1-1-> A <-> (/) : (/) -1-1-> A ) ) |
|
| 5 | 3 4 | mpbiri | |- ( F = (/) -> F : (/) -1-1-> A ) |
| 6 | 2 5 | sylbi | |- ( F Fn (/) -> F : (/) -1-1-> A ) |
| 7 | 1 6 | syl | |- ( F : (/) -onto-> A -> F : (/) -1-1-> A ) |
| 8 | 7 | ancri | |- ( F : (/) -onto-> A -> ( F : (/) -1-1-> A /\ F : (/) -onto-> A ) ) |
| 9 | df-f1o | |- ( F : (/) -1-1-onto-> A <-> ( F : (/) -1-1-> A /\ F : (/) -onto-> A ) ) |
|
| 10 | 8 9 | sylibr | |- ( F : (/) -onto-> A -> F : (/) -1-1-onto-> A ) |
| 11 | f1ofo | |- ( F : (/) -1-1-onto-> A -> F : (/) -onto-> A ) |
|
| 12 | 10 11 | impbii | |- ( F : (/) -onto-> A <-> F : (/) -1-1-onto-> A ) |
| 13 | f1o00 | |- ( F : (/) -1-1-onto-> A <-> ( F = (/) /\ A = (/) ) ) |
|
| 14 | 12 13 | bitri | |- ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) ) |