This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fparlem2 | |- ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres | |- ( x e. ( _V X. _V ) -> ( ( 2nd |` ( _V X. _V ) ) ` x ) = ( 2nd ` x ) ) |
|
| 2 | 1 | eqeq1d | |- ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( 2nd ` x ) = y ) ) |
| 3 | vex | |- y e. _V |
|
| 4 | 3 | elsn2 | |- ( ( 2nd ` x ) e. { y } <-> ( 2nd ` x ) = y ) |
| 5 | fvex | |- ( 1st ` x ) e. _V |
|
| 6 | 5 | biantrur | |- ( ( 2nd ` x ) e. { y } <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) |
| 7 | 4 6 | bitr3i | |- ( ( 2nd ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) |
| 8 | 2 7 | bitrdi | |- ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
| 10 | f2ndres | |- ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
|
| 11 | ffn | |- ( ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
|
| 12 | fniniseg | |- ( ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) ) |
|
| 13 | 10 11 12 | mp2b | |- ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) |
| 14 | elxp7 | |- ( x e. ( _V X. { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
|
| 15 | 9 13 14 | 3bitr4i | |- ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> x e. ( _V X. { y } ) ) |
| 16 | 15 | eqriv | |- ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |