This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabun2 | |- { x e. ( A u. B ) | ph } = ( { x e. A | ph } u. { x e. B | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. ( A u. B ) | ph } = { x | ( x e. ( A u. B ) /\ ph ) } |
|
| 2 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 3 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 4 | 2 3 | uneq12i | |- ( { x e. A | ph } u. { x e. B | ph } ) = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ ph ) } ) |
| 5 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 6 | 5 | anbi1i | |- ( ( x e. ( A u. B ) /\ ph ) <-> ( ( x e. A \/ x e. B ) /\ ph ) ) |
| 7 | andir | |- ( ( ( x e. A \/ x e. B ) /\ ph ) <-> ( ( x e. A /\ ph ) \/ ( x e. B /\ ph ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( x e. ( A u. B ) /\ ph ) <-> ( ( x e. A /\ ph ) \/ ( x e. B /\ ph ) ) ) |
| 9 | 8 | abbii | |- { x | ( x e. ( A u. B ) /\ ph ) } = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ ph ) ) } |
| 10 | unab | |- ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ ph ) } ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ ph ) ) } |
|
| 11 | 9 10 | eqtr4i | |- { x | ( x e. ( A u. B ) /\ ph ) } = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ ph ) } ) |
| 12 | 4 11 | eqtr4i | |- ( { x e. A | ph } u. { x e. B | ph } ) = { x | ( x e. ( A u. B ) /\ ph ) } |
| 13 | 1 12 | eqtr4i | |- { x e. ( A u. B ) | ph } = ( { x e. A | ph } u. { x e. B | ph } ) |