This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppval1 | |- ( ( Fun X /\ X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X ` i ) =/= Z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval | |- ( ( X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) |
|
| 2 | 1 | 3adant1 | |- ( ( Fun X /\ X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) |
| 3 | funfn | |- ( Fun X <-> X Fn dom X ) |
|
| 4 | 3 | biimpi | |- ( Fun X -> X Fn dom X ) |
| 5 | 4 | 3ad2ant1 | |- ( ( Fun X /\ X e. V /\ Z e. W ) -> X Fn dom X ) |
| 6 | fnsnfv | |- ( ( X Fn dom X /\ i e. dom X ) -> { ( X ` i ) } = ( X " { i } ) ) |
|
| 7 | 5 6 | sylan | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> { ( X ` i ) } = ( X " { i } ) ) |
| 8 | 7 | eqcomd | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( X " { i } ) = { ( X ` i ) } ) |
| 9 | 8 | neeq1d | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( ( X " { i } ) =/= { Z } <-> { ( X ` i ) } =/= { Z } ) ) |
| 10 | fvex | |- ( X ` i ) e. _V |
|
| 11 | sneqbg | |- ( ( X ` i ) e. _V -> ( { ( X ` i ) } = { Z } <-> ( X ` i ) = Z ) ) |
|
| 12 | 10 11 | mp1i | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( { ( X ` i ) } = { Z } <-> ( X ` i ) = Z ) ) |
| 13 | 12 | necon3bid | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( { ( X ` i ) } =/= { Z } <-> ( X ` i ) =/= Z ) ) |
| 14 | 9 13 | bitrd | |- ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( ( X " { i } ) =/= { Z } <-> ( X ` i ) =/= Z ) ) |
| 15 | 14 | rabbidva | |- ( ( Fun X /\ X e. V /\ Z e. W ) -> { i e. dom X | ( X " { i } ) =/= { Z } } = { i e. dom X | ( X ` i ) =/= Z } ) |
| 16 | 2 15 | eqtrd | |- ( ( Fun X /\ X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X ` i ) =/= Z } ) |