This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmucnd . (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmucndlem | |- ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ( ( F " A ) X. ( F " A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ran ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) |
|
| 2 | simpr | |- ( ( F Fn X /\ A C_ X ) -> A C_ X ) |
|
| 3 | resmpo | |- ( ( A C_ X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) |
|
| 4 | 2 3 | sylancom | |- ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) |
| 5 | 4 | rneqd | |- ( ( F Fn X /\ A C_ X ) -> ran ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |` ( A X. A ) ) = ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) |
| 6 | 1 5 | eqtrid | |- ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | op1std | |- ( p = <. x , y >. -> ( 1st ` p ) = x ) |
| 10 | 9 | fveq2d | |- ( p = <. x , y >. -> ( F ` ( 1st ` p ) ) = ( F ` x ) ) |
| 11 | 7 8 | op2ndd | |- ( p = <. x , y >. -> ( 2nd ` p ) = y ) |
| 12 | 11 | fveq2d | |- ( p = <. x , y >. -> ( F ` ( 2nd ` p ) ) = ( F ` y ) ) |
| 13 | 10 12 | opeq12d | |- ( p = <. x , y >. -> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. = <. ( F ` x ) , ( F ` y ) >. ) |
| 14 | 13 | mpompt | |- ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) |
| 15 | 14 | eqcomi | |- ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) |
| 16 | 15 | rneqi | |- ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ran ( p e. ( A X. A ) |-> <. ( F ` ( 1st ` p ) ) , ( F ` ( 2nd ` p ) ) >. ) |
| 17 | fvexd | |- ( ( T. /\ p e. ( A X. A ) ) -> ( F ` ( 1st ` p ) ) e. _V ) |
|
| 18 | fvexd | |- ( ( T. /\ p e. ( A X. A ) ) -> ( F ` ( 2nd ` p ) ) e. _V ) |
|
| 19 | 16 17 18 | fliftrel | |- ( T. -> ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) C_ ( _V X. _V ) ) |
| 20 | 19 | mptru | |- ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) C_ ( _V X. _V ) |
| 21 | 20 | sseli | |- ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) -> p e. ( _V X. _V ) ) |
| 22 | 21 | adantl | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) -> p e. ( _V X. _V ) ) |
| 23 | xpss | |- ( ( F " A ) X. ( F " A ) ) C_ ( _V X. _V ) |
|
| 24 | 23 | sseli | |- ( p e. ( ( F " A ) X. ( F " A ) ) -> p e. ( _V X. _V ) ) |
| 25 | 24 | adantl | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( ( F " A ) X. ( F " A ) ) ) -> p e. ( _V X. _V ) ) |
| 26 | eqid | |- ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) |
|
| 27 | opex | |- <. ( F ` x ) , ( F ` y ) >. e. _V |
|
| 28 | 26 27 | elrnmpo | |- ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> E. x e. A E. y e. A <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. ) |
| 29 | eqcom | |- ( <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> <. ( F ` x ) , ( F ` y ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
|
| 30 | fvex | |- ( 1st ` p ) e. _V |
|
| 31 | fvex | |- ( 2nd ` p ) e. _V |
|
| 32 | 30 31 | opth2 | |- ( <. ( F ` x ) , ( F ` y ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. <-> ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) |
| 33 | 29 32 | bitri | |- ( <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) |
| 34 | 33 | 2rexbii | |- ( E. x e. A E. y e. A <. ( 1st ` p ) , ( 2nd ` p ) >. = <. ( F ` x ) , ( F ` y ) >. <-> E. x e. A E. y e. A ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) ) |
| 35 | reeanv | |- ( E. x e. A E. y e. A ( ( F ` x ) = ( 1st ` p ) /\ ( F ` y ) = ( 2nd ` p ) ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) |
|
| 36 | 28 34 35 | 3bitri | |- ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) |
| 37 | fvelimab | |- ( ( F Fn X /\ A C_ X ) -> ( ( 1st ` p ) e. ( F " A ) <-> E. x e. A ( F ` x ) = ( 1st ` p ) ) ) |
|
| 38 | fvelimab | |- ( ( F Fn X /\ A C_ X ) -> ( ( 2nd ` p ) e. ( F " A ) <-> E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) |
|
| 39 | 37 38 | anbi12d | |- ( ( F Fn X /\ A C_ X ) -> ( ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) <-> ( E. x e. A ( F ` x ) = ( 1st ` p ) /\ E. y e. A ( F ` y ) = ( 2nd ` p ) ) ) ) |
| 40 | 36 39 | bitr4id | |- ( ( F Fn X /\ A C_ X ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) ) ) |
| 41 | opelxp | |- ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) <-> ( ( 1st ` p ) e. ( F " A ) /\ ( 2nd ` p ) e. ( F " A ) ) ) |
|
| 42 | 40 41 | bitr4di | |- ( ( F Fn X /\ A C_ X ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) |
| 43 | 42 | adantr | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) |
| 44 | 1st2nd2 | |- ( p e. ( _V X. _V ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
|
| 45 | 44 | adantl | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 46 | 45 | eleq1d | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) ) ) |
| 47 | 45 | eleq1d | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ( ( F " A ) X. ( F " A ) ) <-> <. ( 1st ` p ) , ( 2nd ` p ) >. e. ( ( F " A ) X. ( F " A ) ) ) ) |
| 48 | 43 46 47 | 3bitr4d | |- ( ( ( F Fn X /\ A C_ X ) /\ p e. ( _V X. _V ) ) -> ( p e. ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) <-> p e. ( ( F " A ) X. ( F " A ) ) ) ) |
| 49 | 22 25 48 | eqrdav | |- ( ( F Fn X /\ A C_ X ) -> ran ( x e. A , y e. A |-> <. ( F ` x ) , ( F ` y ) >. ) = ( ( F " A ) X. ( F " A ) ) ) |
| 50 | 6 49 | eqtrd | |- ( ( F Fn X /\ A C_ X ) -> ( ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) " ( A X. A ) ) = ( ( F " A ) X. ( F " A ) ) ) |