This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage by a uniformly continuous function F of an entourage W of Y is an entourage of X . Note of the definition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnprima.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| ucnprima.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
||
| ucnprima.3 | |- ( ph -> F e. ( U uCn V ) ) |
||
| ucnprima.4 | |- ( ph -> W e. V ) |
||
| ucnprima.5 | |- G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
||
| Assertion | ucnprima | |- ( ph -> ( `' G " W ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | |- ( ph -> U e. ( UnifOn ` X ) ) |
|
| 2 | ucnprima.2 | |- ( ph -> V e. ( UnifOn ` Y ) ) |
|
| 3 | ucnprima.3 | |- ( ph -> F e. ( U uCn V ) ) |
|
| 4 | ucnprima.4 | |- ( ph -> W e. V ) |
|
| 5 | ucnprima.5 | |- G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
|
| 6 | 1 2 3 4 5 | ucnima | |- ( ph -> E. r e. U ( G " r ) C_ W ) |
| 7 | 5 | mpofun | |- Fun G |
| 8 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ r e. U ) -> r C_ ( X X. X ) ) |
|
| 9 | 1 8 | sylan | |- ( ( ph /\ r e. U ) -> r C_ ( X X. X ) ) |
| 10 | opex | |- <. ( F ` x ) , ( F ` y ) >. e. _V |
|
| 11 | 5 10 | dmmpo | |- dom G = ( X X. X ) |
| 12 | 9 11 | sseqtrrdi | |- ( ( ph /\ r e. U ) -> r C_ dom G ) |
| 13 | funimass3 | |- ( ( Fun G /\ r C_ dom G ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) |
|
| 14 | 7 12 13 | sylancr | |- ( ( ph /\ r e. U ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) |
| 15 | 14 | rexbidva | |- ( ph -> ( E. r e. U ( G " r ) C_ W <-> E. r e. U r C_ ( `' G " W ) ) ) |
| 16 | 6 15 | mpbid | |- ( ph -> E. r e. U r C_ ( `' G " W ) ) |
| 17 | 1 | adantr | |- ( ( ph /\ r e. U ) -> U e. ( UnifOn ` X ) ) |
| 18 | simpr | |- ( ( ph /\ r e. U ) -> r e. U ) |
|
| 19 | cnvimass | |- ( `' G " W ) C_ dom G |
|
| 20 | 19 11 | sseqtri | |- ( `' G " W ) C_ ( X X. X ) |
| 21 | 20 | a1i | |- ( ( ph /\ r e. U ) -> ( `' G " W ) C_ ( X X. X ) ) |
| 22 | ustssel | |- ( ( U e. ( UnifOn ` X ) /\ r e. U /\ ( `' G " W ) C_ ( X X. X ) ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
|
| 23 | 17 18 21 22 | syl3anc | |- ( ( ph /\ r e. U ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
| 24 | 23 | rexlimdva | |- ( ph -> ( E. r e. U r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
| 25 | 16 24 | mpd | |- ( ph -> ( `' G " W ) e. U ) |