This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a Cauchy filter base and any entourage V , there is an element of the filter small in V . (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfiluexsm | |- ( ( U e. ( UnifOn ` X ) /\ F e. ( CauFilU ` U ) /\ V e. U ) -> E. a e. F ( a X. a ) C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscfilu | |- ( U e. ( UnifOn ` X ) -> ( F e. ( CauFilU ` U ) <-> ( F e. ( fBas ` X ) /\ A. v e. U E. a e. F ( a X. a ) C_ v ) ) ) |
|
| 2 | 1 | simplbda | |- ( ( U e. ( UnifOn ` X ) /\ F e. ( CauFilU ` U ) ) -> A. v e. U E. a e. F ( a X. a ) C_ v ) |
| 3 | 2 | 3adant3 | |- ( ( U e. ( UnifOn ` X ) /\ F e. ( CauFilU ` U ) /\ V e. U ) -> A. v e. U E. a e. F ( a X. a ) C_ v ) |
| 4 | sseq2 | |- ( v = V -> ( ( a X. a ) C_ v <-> ( a X. a ) C_ V ) ) |
|
| 5 | 4 | rexbidv | |- ( v = V -> ( E. a e. F ( a X. a ) C_ v <-> E. a e. F ( a X. a ) C_ V ) ) |
| 6 | 5 | rspcv | |- ( V e. U -> ( A. v e. U E. a e. F ( a X. a ) C_ v -> E. a e. F ( a X. a ) C_ V ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( U e. ( UnifOn ` X ) /\ F e. ( CauFilU ` U ) /\ V e. U ) -> ( A. v e. U E. a e. F ( a X. a ) C_ v -> E. a e. F ( a X. a ) C_ V ) ) |
| 8 | 3 7 | mpd | |- ( ( U e. ( UnifOn ` X ) /\ F e. ( CauFilU ` U ) /\ V e. U ) -> E. a e. F ( a X. a ) C_ V ) |