This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of Apostol p. 28. (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rebtwnz | |- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | zbtwnre | |- ( -u A e. RR -> E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) ) |
| 4 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 5 | znegcl | |- ( y e. ZZ -> -u y e. ZZ ) |
|
| 6 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 7 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 8 | negcon2 | |- ( ( y e. CC /\ x e. CC ) -> ( y = -u x <-> x = -u y ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( y e. ZZ /\ x e. ZZ ) -> ( y = -u x <-> x = -u y ) ) |
| 10 | 5 9 | reuhyp | |- ( y e. ZZ -> E! x e. ZZ y = -u x ) |
| 11 | breq2 | |- ( y = -u x -> ( -u A <_ y <-> -u A <_ -u x ) ) |
|
| 12 | breq1 | |- ( y = -u x -> ( y < ( -u A + 1 ) <-> -u x < ( -u A + 1 ) ) ) |
|
| 13 | 11 12 | anbi12d | |- ( y = -u x -> ( ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 14 | 4 10 13 | reuxfr1 | |- ( E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> E! x e. ZZ ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) |
| 15 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 16 | leneg | |- ( ( x e. RR /\ A e. RR ) -> ( x <_ A <-> -u A <_ -u x ) ) |
|
| 17 | 16 | ancoms | |- ( ( A e. RR /\ x e. RR ) -> ( x <_ A <-> -u A <_ -u x ) ) |
| 18 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 19 | ltneg | |- ( ( ( A - 1 ) e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> -u x < -u ( A - 1 ) ) ) |
|
| 20 | 18 19 | sylan | |- ( ( A e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> -u x < -u ( A - 1 ) ) ) |
| 21 | 1re | |- 1 e. RR |
|
| 22 | ltsubadd | |- ( ( A e. RR /\ 1 e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> A < ( x + 1 ) ) ) |
|
| 23 | 21 22 | mp3an2 | |- ( ( A e. RR /\ x e. RR ) -> ( ( A - 1 ) < x <-> A < ( x + 1 ) ) ) |
| 24 | recn | |- ( A e. RR -> A e. CC ) |
|
| 25 | ax-1cn | |- 1 e. CC |
|
| 26 | negsubdi | |- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( -u A + 1 ) ) |
|
| 27 | 24 25 26 | sylancl | |- ( A e. RR -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 28 | 27 | adantr | |- ( ( A e. RR /\ x e. RR ) -> -u ( A - 1 ) = ( -u A + 1 ) ) |
| 29 | 28 | breq2d | |- ( ( A e. RR /\ x e. RR ) -> ( -u x < -u ( A - 1 ) <-> -u x < ( -u A + 1 ) ) ) |
| 30 | 20 23 29 | 3bitr3d | |- ( ( A e. RR /\ x e. RR ) -> ( A < ( x + 1 ) <-> -u x < ( -u A + 1 ) ) ) |
| 31 | 17 30 | anbi12d | |- ( ( A e. RR /\ x e. RR ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 32 | 15 31 | sylan2 | |- ( ( A e. RR /\ x e. ZZ ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) ) ) |
| 33 | 32 | bicomd | |- ( ( A e. RR /\ x e. ZZ ) -> ( ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) <-> ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 34 | 33 | reubidva | |- ( A e. RR -> ( E! x e. ZZ ( -u A <_ -u x /\ -u x < ( -u A + 1 ) ) <-> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 35 | 14 34 | bitrid | |- ( A e. RR -> ( E! y e. ZZ ( -u A <_ y /\ y < ( -u A + 1 ) ) <-> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 36 | 3 35 | mpbid | |- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |