This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the floor (greatest integer) function. The floor of A is the (unique) integer less than or equal to A whose successor is strictly greater than A . (Contributed by NM, 14-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flval | |- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( y = A -> ( x <_ y <-> x <_ A ) ) |
|
| 2 | breq1 | |- ( y = A -> ( y < ( x + 1 ) <-> A < ( x + 1 ) ) ) |
|
| 3 | 1 2 | anbi12d | |- ( y = A -> ( ( x <_ y /\ y < ( x + 1 ) ) <-> ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 4 | 3 | riotabidv | |- ( y = A -> ( iota_ x e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
| 5 | df-fl | |- |_ = ( y e. RR |-> ( iota_ x e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |
|
| 6 | riotaex | |- ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |