This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submmulgcl.t | |- .xb = ( .g ` G ) |
|
| submmulg.h | |- H = ( G |`s S ) |
||
| submmulg.t | |- .x. = ( .g ` H ) |
||
| Assertion | submmulg | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) = ( N .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmulgcl.t | |- .xb = ( .g ` G ) |
|
| 2 | submmulg.h | |- H = ( G |`s S ) |
|
| 3 | submmulg.t | |- .x. = ( .g ` H ) |
|
| 4 | simpl1 | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> S e. ( SubMnd ` G ) ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 2 5 | ressplusg | |- ( S e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 | 4 6 | syl | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( +g ` G ) = ( +g ` H ) ) |
| 8 | 7 | seqeq2d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
| 9 | 8 | fveq1d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 10 | simpr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> N e. NN ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | 11 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> S C_ ( Base ` G ) ) |
| 14 | simp3 | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. S ) |
|
| 15 | 13 14 | sseldd | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. ( Base ` G ) ) |
| 16 | 15 | adantr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> X e. ( Base ` G ) ) |
| 17 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 18 | 11 5 1 17 | mulgnn | |- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N .xb X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 19 | 10 16 18 | syl2anc | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .xb X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 20 | 2 | submbas | |- ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> S = ( Base ` H ) ) |
| 22 | 14 21 | eleqtrd | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. ( Base ` H ) ) |
| 23 | 22 | adantr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> X e. ( Base ` H ) ) |
| 24 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 25 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 26 | eqid | |- seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
|
| 27 | 24 25 3 26 | mulgnn | |- ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N .x. X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 28 | 10 23 27 | syl2anc | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 29 | 9 19 28 | 3eqtr4d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .xb X ) = ( N .x. X ) ) |
| 30 | simpl1 | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> S e. ( SubMnd ` G ) ) |
|
| 31 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 32 | 2 31 | subm0 | |- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 33 | 30 32 | syl | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 34 | 15 | adantr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> X e. ( Base ` G ) ) |
| 35 | 11 31 1 | mulg0 | |- ( X e. ( Base ` G ) -> ( 0 .xb X ) = ( 0g ` G ) ) |
| 36 | 34 35 | syl | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .xb X ) = ( 0g ` G ) ) |
| 37 | 22 | adantr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> X e. ( Base ` H ) ) |
| 38 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 39 | 24 38 3 | mulg0 | |- ( X e. ( Base ` H ) -> ( 0 .x. X ) = ( 0g ` H ) ) |
| 40 | 37 39 | syl | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` H ) ) |
| 41 | 33 36 40 | 3eqtr4d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .xb X ) = ( 0 .x. X ) ) |
| 42 | simpr | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> N = 0 ) |
|
| 43 | 42 | oveq1d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .xb X ) = ( 0 .xb X ) ) |
| 44 | 42 | oveq1d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) |
| 45 | 41 43 44 | 3eqtr4d | |- ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .xb X ) = ( N .x. X ) ) |
| 46 | simp2 | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> N e. NN0 ) |
|
| 47 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 48 | 46 47 | sylib | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N e. NN \/ N = 0 ) ) |
| 49 | 29 45 48 | mpjaodan | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) = ( N .x. X ) ) |