This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wemoiso2 | |- ( S We B -> E* f f Isom R , S ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S We B ) |
|
| 2 | isof1o | |- ( f Isom R , S ( A , B ) -> f : A -1-1-onto-> B ) |
|
| 3 | f1ofo | |- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
|
| 4 | forn | |- ( f : A -onto-> B -> ran f = B ) |
|
| 5 | 2 3 4 | 3syl | |- ( f Isom R , S ( A , B ) -> ran f = B ) |
| 6 | vex | |- f e. _V |
|
| 7 | 6 | rnex | |- ran f e. _V |
| 8 | 5 7 | eqeltrrdi | |- ( f Isom R , S ( A , B ) -> B e. _V ) |
| 9 | 8 | ad2antrl | |- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> B e. _V ) |
| 10 | exse | |- ( B e. _V -> S Se B ) |
|
| 11 | 9 10 | syl | |- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S Se B ) |
| 12 | 1 11 | jca | |- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> ( S We B /\ S Se B ) ) |
| 13 | weisoeq2 | |- ( ( ( S We B /\ S Se B ) /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
|
| 14 | 12 13 | sylancom | |- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
| 15 | 14 | ex | |- ( S We B -> ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 16 | 15 | alrimivv | |- ( S We B -> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 17 | isoeq1 | |- ( f = g -> ( f Isom R , S ( A , B ) <-> g Isom R , S ( A , B ) ) ) |
|
| 18 | 17 | mo4 | |- ( E* f f Isom R , S ( A , B ) <-> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 19 | 16 18 | sylibr | |- ( S We B -> E* f f Isom R , S ( A , B ) ) |