This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | |- F = OrdIso ( R , A ) |
|
| Assertion | oiexg | |- ( A e. V -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | |- F = OrdIso ( R , A ) |
|
| 2 | 1 | ordtype | |- ( ( R We A /\ R Se A ) -> F Isom _E , R ( dom F , A ) ) |
| 3 | isof1o | |- ( F Isom _E , R ( dom F , A ) -> F : dom F -1-1-onto-> A ) |
|
| 4 | f1of1 | |- ( F : dom F -1-1-onto-> A -> F : dom F -1-1-> A ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( R We A /\ R Se A ) -> F : dom F -1-1-> A ) |
| 6 | f1f | |- ( F : dom F -1-1-> A -> F : dom F --> A ) |
|
| 7 | f1dmex | |- ( ( F : dom F -1-1-> A /\ A e. V ) -> dom F e. _V ) |
|
| 8 | fex | |- ( ( F : dom F --> A /\ dom F e. _V ) -> F e. _V ) |
|
| 9 | 6 7 8 | syl2an2r | |- ( ( F : dom F -1-1-> A /\ A e. V ) -> F e. _V ) |
| 10 | 9 | expcom | |- ( A e. V -> ( F : dom F -1-1-> A -> F e. _V ) ) |
| 11 | 5 10 | syl5 | |- ( A e. V -> ( ( R We A /\ R Se A ) -> F e. _V ) ) |
| 12 | 1 | oi0 | |- ( -. ( R We A /\ R Se A ) -> F = (/) ) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 12 13 | eqeltrdi | |- ( -. ( R We A /\ R Se A ) -> F e. _V ) |
| 15 | 11 14 | pm2.61d1 | |- ( A e. V -> F e. _V ) |