This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnsdomel | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> A ~< B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardnn | |- ( A e. _om -> ( card ` A ) = A ) |
|
| 2 | cardnn | |- ( B e. _om -> ( card ` B ) = B ) |
|
| 3 | eleq12 | |- ( ( ( card ` A ) = A /\ ( card ` B ) = B ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) ) |
| 5 | nnon | |- ( A e. _om -> A e. On ) |
|
| 6 | onenon | |- ( A e. On -> A e. dom card ) |
|
| 7 | 5 6 | syl | |- ( A e. _om -> A e. dom card ) |
| 8 | nnon | |- ( B e. _om -> B e. On ) |
|
| 9 | onenon | |- ( B e. On -> B e. dom card ) |
|
| 10 | 8 9 | syl | |- ( B e. _om -> B e. dom card ) |
| 11 | cardsdom2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |
|
| 12 | 7 10 11 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |
| 13 | 4 12 | bitr3d | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> A ~< B ) ) |