This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsdominel | |- ( ( A e. On /\ B e. On /\ ( A i^i C ) ~< ( B i^i C ) ) -> A e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontri1 | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) |
| 3 | inex1g | |- ( A e. On -> ( A i^i C ) e. _V ) |
|
| 4 | ssrin | |- ( B C_ A -> ( B i^i C ) C_ ( A i^i C ) ) |
|
| 5 | ssdomg | |- ( ( A i^i C ) e. _V -> ( ( B i^i C ) C_ ( A i^i C ) -> ( B i^i C ) ~<_ ( A i^i C ) ) ) |
|
| 6 | 3 4 5 | syl2im | |- ( A e. On -> ( B C_ A -> ( B i^i C ) ~<_ ( A i^i C ) ) ) |
| 7 | domnsym | |- ( ( B i^i C ) ~<_ ( A i^i C ) -> -. ( A i^i C ) ~< ( B i^i C ) ) |
|
| 8 | 6 7 | syl6 | |- ( A e. On -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
| 9 | 8 | adantr | |- ( ( A e. On /\ B e. On ) -> ( B C_ A -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
| 10 | 2 9 | sylbird | |- ( ( A e. On /\ B e. On ) -> ( -. A e. B -> -. ( A i^i C ) ~< ( B i^i C ) ) ) |
| 11 | 10 | con4d | |- ( ( A e. On /\ B e. On ) -> ( ( A i^i C ) ~< ( B i^i C ) -> A e. B ) ) |
| 12 | 11 | 3impia | |- ( ( A e. On /\ B e. On /\ ( A i^i C ) ~< ( B i^i C ) ) -> A e. B ) |