This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isfin3ds.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) } |
|
| Assertion | isfin3ds | |- ( A e. V -> ( A e. F <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3ds.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) } |
|
| 2 | suceq | |- ( b = x -> suc b = suc x ) |
|
| 3 | 2 | fveq2d | |- ( b = x -> ( a ` suc b ) = ( a ` suc x ) ) |
| 4 | fveq2 | |- ( b = x -> ( a ` b ) = ( a ` x ) ) |
|
| 5 | 3 4 | sseq12d | |- ( b = x -> ( ( a ` suc b ) C_ ( a ` b ) <-> ( a ` suc x ) C_ ( a ` x ) ) ) |
| 6 | 5 | cbvralvw | |- ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) <-> A. x e. _om ( a ` suc x ) C_ ( a ` x ) ) |
| 7 | fveq1 | |- ( a = f -> ( a ` suc x ) = ( f ` suc x ) ) |
|
| 8 | fveq1 | |- ( a = f -> ( a ` x ) = ( f ` x ) ) |
|
| 9 | 7 8 | sseq12d | |- ( a = f -> ( ( a ` suc x ) C_ ( a ` x ) <-> ( f ` suc x ) C_ ( f ` x ) ) ) |
| 10 | 9 | ralbidv | |- ( a = f -> ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) <-> A. x e. _om ( f ` suc x ) C_ ( f ` x ) ) ) |
| 11 | 6 10 | bitrid | |- ( a = f -> ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) <-> A. x e. _om ( f ` suc x ) C_ ( f ` x ) ) ) |
| 12 | rneq | |- ( a = f -> ran a = ran f ) |
|
| 13 | 12 | inteqd | |- ( a = f -> |^| ran a = |^| ran f ) |
| 14 | 13 12 | eleq12d | |- ( a = f -> ( |^| ran a e. ran a <-> |^| ran f e. ran f ) ) |
| 15 | 11 14 | imbi12d | |- ( a = f -> ( ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) <-> ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 16 | 15 | cbvralvw | |- ( A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) <-> A. f e. ( ~P g ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) |
| 17 | pweq | |- ( g = A -> ~P g = ~P A ) |
|
| 18 | 17 | oveq1d | |- ( g = A -> ( ~P g ^m _om ) = ( ~P A ^m _om ) ) |
| 19 | 18 | raleqdv | |- ( g = A -> ( A. f e. ( ~P g ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 20 | 16 19 | bitrid | |- ( g = A -> ( A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 21 | 20 1 | elab2g | |- ( A e. V -> ( A e. F <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |