This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaprop.0 | |- F/ x ps |
|
| riotaprop.1 | |- B = ( iota_ x e. A ph ) |
||
| riotaprop.2 | |- ( x = B -> ( ph <-> ps ) ) |
||
| Assertion | riotaprop | |- ( E! x e. A ph -> ( B e. A /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaprop.0 | |- F/ x ps |
|
| 2 | riotaprop.1 | |- B = ( iota_ x e. A ph ) |
|
| 3 | riotaprop.2 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 4 | riotacl | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
|
| 5 | 2 4 | eqeltrid | |- ( E! x e. A ph -> B e. A ) |
| 6 | 2 | eqcomi | |- ( iota_ x e. A ph ) = B |
| 7 | nfriota1 | |- F/_ x ( iota_ x e. A ph ) |
|
| 8 | 2 7 | nfcxfr | |- F/_ x B |
| 9 | 8 1 3 | riota2f | |- ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) ) |
| 10 | 6 9 | mpbiri | |- ( ( B e. A /\ E! x e. A ph ) -> ps ) |
| 11 | 5 10 | mpancom | |- ( E! x e. A ph -> ps ) |
| 12 | 5 11 | jca | |- ( E! x e. A ph -> ( B e. A /\ ps ) ) |