This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Each step of U is a decrease. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem13 | |- ( A e. _om -> ( U ` suc A ) C_ ( U ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | 1 | fin23lem12 | |- ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) ) |
| 3 | sseq1 | |- ( ( U ` A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) -> ( ( U ` A ) C_ ( U ` A ) <-> if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) ) ) |
|
| 4 | sseq1 | |- ( ( ( t ` A ) i^i ( U ` A ) ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) -> ( ( ( t ` A ) i^i ( U ` A ) ) C_ ( U ` A ) <-> if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) ) ) |
|
| 5 | ssid | |- ( U ` A ) C_ ( U ` A ) |
|
| 6 | inss2 | |- ( ( t ` A ) i^i ( U ` A ) ) C_ ( U ` A ) |
|
| 7 | 3 4 5 6 | keephyp | |- if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) |
| 8 | 2 7 | eqsstrdi | |- ( A e. _om -> ( U ` suc A ) C_ ( U ` A ) ) |