This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by JJ, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssuni | |- ( ( A C_ B /\ B e. C ) -> A C_ U. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunii | |- ( ( x e. B /\ B e. C ) -> x e. U. C ) |
|
| 2 | 1 | expcom | |- ( B e. C -> ( x e. B -> x e. U. C ) ) |
| 3 | 2 | imim2d | |- ( B e. C -> ( ( x e. A -> x e. B ) -> ( x e. A -> x e. U. C ) ) ) |
| 4 | 3 | alimdv | |- ( B e. C -> ( A. x ( x e. A -> x e. B ) -> A. x ( x e. A -> x e. U. C ) ) ) |
| 5 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 6 | df-ss | |- ( A C_ U. C <-> A. x ( x e. A -> x e. U. C ) ) |
|
| 7 | 4 5 6 | 3imtr4g | |- ( B e. C -> ( A C_ B -> A C_ U. C ) ) |
| 8 | 7 | impcom | |- ( ( A C_ B /\ B e. C ) -> A C_ U. C ) |