This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssun | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B u. C ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> C e. A ) |
|
| 2 | ssequn1 | |- ( B C_ C <-> ( B u. C ) = C ) |
|
| 3 | eleq1 | |- ( ( B u. C ) = C -> ( ( B u. C ) e. A <-> C e. A ) ) |
|
| 4 | 2 3 | sylbi | |- ( B C_ C -> ( ( B u. C ) e. A <-> C e. A ) ) |
| 5 | 1 4 | syl5ibrcom | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C -> ( B u. C ) e. A ) ) |
| 6 | simprl | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> B e. A ) |
|
| 7 | ssequn2 | |- ( C C_ B <-> ( B u. C ) = B ) |
|
| 8 | eleq1 | |- ( ( B u. C ) = B -> ( ( B u. C ) e. A <-> B e. A ) ) |
|
| 9 | 7 8 | sylbi | |- ( C C_ B -> ( ( B u. C ) e. A <-> B e. A ) ) |
| 10 | 6 9 | syl5ibrcom | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( C C_ B -> ( B u. C ) e. A ) ) |
| 11 | sorpssi | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) ) |
|
| 12 | 5 10 11 | mpjaod | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B u. C ) e. A ) |