This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem filsspw

Description: A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filsspw
|- ( F e. ( Fil ` X ) -> F C_ ~P X )

Proof

Step Hyp Ref Expression
1 filfbas
 |-  ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) )
2 fbsspw
 |-  ( F e. ( fBas ` X ) -> F C_ ~P X )
3 1 2 syl
 |-  ( F e. ( Fil ` X ) -> F C_ ~P X )