This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Mario Carneiro, 28-Apr-2015) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardun | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardadju | |- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
| 3 | 2 | ensymd | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
| 4 | endjudisj | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
|
| 5 | entr | |- ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) /\ ( A |_| B ) ~~ ( A u. B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
| 7 | carden2b | |- ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
| 9 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 10 | ficardom | |- ( B e. Fin -> ( card ` B ) e. _om ) |
|
| 11 | nnacl | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
|
| 12 | cardnn | |- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 14 | 9 10 13 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 15 | 14 | 3adant3 | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 16 | 8 15 | eqtr3d | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |