This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnprm | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> -. ( A ^ N ) e. Prime ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
|
| 2 | 1 | simprbi | |- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
| 3 | 2 | adantl | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N =/= 1 ) |
| 4 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N e. ZZ ) |
| 6 | simpr | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. Prime ) |
|
| 7 | simpll | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> A e. QQ ) |
|
| 8 | prmnn | |- ( ( A ^ N ) e. Prime -> ( A ^ N ) e. NN ) |
|
| 9 | 8 | adantl | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. NN ) |
| 10 | 9 | nnne0d | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) =/= 0 ) |
| 11 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N e. NN ) |
| 13 | 12 | 0expd | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( 0 ^ N ) = 0 ) |
| 14 | 10 13 | neeqtrrd | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) =/= ( 0 ^ N ) ) |
| 15 | oveq1 | |- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
|
| 16 | 15 | necon3i | |- ( ( A ^ N ) =/= ( 0 ^ N ) -> A =/= 0 ) |
| 17 | 14 16 | syl | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> A =/= 0 ) |
| 18 | pcqcl | |- ( ( ( A ^ N ) e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( ( A ^ N ) pCnt A ) e. ZZ ) |
|
| 19 | 6 7 17 18 | syl12anc | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt A ) e. ZZ ) |
| 20 | dvdsmul1 | |- ( ( N e. ZZ /\ ( ( A ^ N ) pCnt A ) e. ZZ ) -> N || ( N x. ( ( A ^ N ) pCnt A ) ) ) |
|
| 21 | 5 19 20 | syl2anc | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N || ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 22 | 9 | nncnd | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( A ^ N ) e. CC ) |
| 23 | 22 | exp1d | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) ^ 1 ) = ( A ^ N ) ) |
| 24 | 23 | oveq2d | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = ( ( A ^ N ) pCnt ( A ^ N ) ) ) |
| 25 | 1z | |- 1 e. ZZ |
|
| 26 | pcid | |- ( ( ( A ^ N ) e. Prime /\ 1 e. ZZ ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = 1 ) |
|
| 27 | 6 25 26 | sylancl | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( ( A ^ N ) ^ 1 ) ) = 1 ) |
| 28 | pcexp | |- ( ( ( A ^ N ) e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( ( A ^ N ) pCnt ( A ^ N ) ) = ( N x. ( ( A ^ N ) pCnt A ) ) ) |
|
| 29 | 6 7 17 5 28 | syl121anc | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( ( A ^ N ) pCnt ( A ^ N ) ) = ( N x. ( ( A ^ N ) pCnt A ) ) ) |
| 30 | 24 27 29 | 3eqtr3rd | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> ( N x. ( ( A ^ N ) pCnt A ) ) = 1 ) |
| 31 | 21 30 | breqtrd | |- ( ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) /\ ( A ^ N ) e. Prime ) -> N || 1 ) |
| 32 | 31 | ex | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A ^ N ) e. Prime -> N || 1 ) ) |
| 33 | 11 | adantl | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N e. NN ) |
| 34 | 33 | nnnn0d | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> N e. NN0 ) |
| 35 | dvds1 | |- ( N e. NN0 -> ( N || 1 <-> N = 1 ) ) |
|
| 36 | 34 35 | syl | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( N || 1 <-> N = 1 ) ) |
| 37 | 32 36 | sylibd | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A ^ N ) e. Prime -> N = 1 ) ) |
| 38 | 37 | necon3ad | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> ( N =/= 1 -> -. ( A ^ N ) e. Prime ) ) |
| 39 | 3 38 | mpd | |- ( ( A e. QQ /\ N e. ( ZZ>= ` 2 ) ) -> -. ( A ^ N ) e. Prime ) |