This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnprm | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≠ 1 ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ≠ 1 ) |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝑁 ∈ ℤ ) |
| 6 | simpr | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) | |
| 7 | simpll | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝐴 ∈ ℚ ) | |
| 8 | prmnn | ⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
| 10 | 9 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 11 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝑁 ∈ ℕ ) |
| 13 | 12 | 0expd | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 0 ↑ 𝑁 ) = 0 ) |
| 14 | 10 13 | neeqtrrd | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ≠ ( 0 ↑ 𝑁 ) ) |
| 15 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) | |
| 16 | 15 | necon3i | ⊢ ( ( 𝐴 ↑ 𝑁 ) ≠ ( 0 ↑ 𝑁 ) → 𝐴 ≠ 0 ) |
| 17 | 14 16 | syl | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝐴 ≠ 0 ) |
| 18 | pcqcl | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ∈ ℤ ) | |
| 19 | 6 7 17 18 | syl12anc | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ∈ ℤ ) |
| 20 | dvdsmul1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ) ) | |
| 21 | 5 19 20 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝑁 ∥ ( 𝑁 · ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ) ) |
| 22 | 9 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 23 | 22 | exp1d | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) ↑ 1 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt ( ( 𝐴 ↑ 𝑁 ) ↑ 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) pCnt ( 𝐴 ↑ 𝑁 ) ) ) |
| 25 | 1z | ⊢ 1 ∈ ℤ | |
| 26 | pcid | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ ∧ 1 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt ( ( 𝐴 ↑ 𝑁 ) ↑ 1 ) ) = 1 ) | |
| 27 | 6 25 26 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt ( ( 𝐴 ↑ 𝑁 ) ↑ 1 ) ) = 1 ) |
| 28 | pcexp | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ) ) | |
| 29 | 6 7 17 5 28 | syl121anc | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ) ) |
| 30 | 24 27 29 | 3eqtr3rd | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → ( 𝑁 · ( ( 𝐴 ↑ 𝑁 ) pCnt 𝐴 ) ) = 1 ) |
| 31 | 21 30 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) → 𝑁 ∥ 1 ) |
| 32 | 31 | ex | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ → 𝑁 ∥ 1 ) ) |
| 33 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ℕ ) |
| 34 | 33 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ℕ0 ) |
| 35 | dvds1 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∥ 1 ↔ 𝑁 = 1 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 ∥ 1 ↔ 𝑁 = 1 ) ) |
| 37 | 32 36 | sylibd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 ↑ 𝑁 ) ∈ ℙ → 𝑁 = 1 ) ) |
| 38 | 37 | necon3ad | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 ≠ 1 → ¬ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) ) |
| 39 | 3 38 | mpd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 ↑ 𝑁 ) ∈ ℙ ) |