This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series A ^ M + A ^ ( M + 1 ) + ... + A ^ ( N - 1 ) . (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geoserg.1 | |- ( ph -> A e. CC ) |
|
| geoserg.2 | |- ( ph -> A =/= 1 ) |
||
| geoserg.3 | |- ( ph -> M e. NN0 ) |
||
| geoserg.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| Assertion | geoserg | |- ( ph -> sum_ k e. ( M ..^ N ) ( A ^ k ) = ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geoserg.1 | |- ( ph -> A e. CC ) |
|
| 2 | geoserg.2 | |- ( ph -> A =/= 1 ) |
|
| 3 | geoserg.3 | |- ( ph -> M e. NN0 ) |
|
| 4 | geoserg.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 6 | 5 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | subcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
|
| 9 | 7 1 8 | sylancr | |- ( ph -> ( 1 - A ) e. CC ) |
| 10 | 1 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A e. CC ) |
| 11 | elfzouz | |- ( k e. ( M ..^ N ) -> k e. ( ZZ>= ` M ) ) |
|
| 12 | eluznn0 | |- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
|
| 13 | 3 11 12 | syl2an | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. NN0 ) |
| 14 | 10 13 | expcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( A ^ k ) e. CC ) |
| 15 | 6 9 14 | fsummulc1 | |- ( ph -> ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( ( A ^ k ) x. ( 1 - A ) ) ) |
| 16 | 7 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> 1 e. CC ) |
| 17 | 14 16 10 | subdid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. ( 1 - A ) ) = ( ( ( A ^ k ) x. 1 ) - ( ( A ^ k ) x. A ) ) ) |
| 18 | 14 | mulridd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. 1 ) = ( A ^ k ) ) |
| 19 | 10 13 | expp1d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 20 | 19 | eqcomd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. A ) = ( A ^ ( k + 1 ) ) ) |
| 21 | 18 20 | oveq12d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( A ^ k ) x. 1 ) - ( ( A ^ k ) x. A ) ) = ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) |
| 22 | 17 21 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. ( 1 - A ) ) = ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) |
| 23 | 22 | sumeq2dv | |- ( ph -> sum_ k e. ( M ..^ N ) ( ( A ^ k ) x. ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) |
| 24 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 25 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 26 | oveq2 | |- ( j = M -> ( A ^ j ) = ( A ^ M ) ) |
|
| 27 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 28 | 1 | adantr | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
| 29 | elfzuz | |- ( j e. ( M ... N ) -> j e. ( ZZ>= ` M ) ) |
|
| 30 | eluznn0 | |- ( ( M e. NN0 /\ j e. ( ZZ>= ` M ) ) -> j e. NN0 ) |
|
| 31 | 3 29 30 | syl2an | |- ( ( ph /\ j e. ( M ... N ) ) -> j e. NN0 ) |
| 32 | 28 31 | expcld | |- ( ( ph /\ j e. ( M ... N ) ) -> ( A ^ j ) e. CC ) |
| 33 | 24 25 26 27 4 32 | telfsumo | |- ( ph -> sum_ k e. ( M ..^ N ) ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) = ( ( A ^ M ) - ( A ^ N ) ) ) |
| 34 | 15 23 33 | 3eqtrrd | |- ( ph -> ( ( A ^ M ) - ( A ^ N ) ) = ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) ) |
| 35 | 1 3 | expcld | |- ( ph -> ( A ^ M ) e. CC ) |
| 36 | eluznn0 | |- ( ( M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> N e. NN0 ) |
|
| 37 | 3 4 36 | syl2anc | |- ( ph -> N e. NN0 ) |
| 38 | 1 37 | expcld | |- ( ph -> ( A ^ N ) e. CC ) |
| 39 | 35 38 | subcld | |- ( ph -> ( ( A ^ M ) - ( A ^ N ) ) e. CC ) |
| 40 | 6 14 | fsumcl | |- ( ph -> sum_ k e. ( M ..^ N ) ( A ^ k ) e. CC ) |
| 41 | 2 | necomd | |- ( ph -> 1 =/= A ) |
| 42 | subeq0 | |- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
|
| 43 | 7 1 42 | sylancr | |- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 44 | 43 | necon3bid | |- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
| 45 | 41 44 | mpbird | |- ( ph -> ( 1 - A ) =/= 0 ) |
| 46 | 39 40 9 45 | divmul3d | |- ( ph -> ( ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( A ^ k ) <-> ( ( A ^ M ) - ( A ^ N ) ) = ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) ) ) |
| 47 | 34 46 | mpbird | |- ( ph -> ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( A ^ k ) ) |
| 48 | 47 | eqcomd | |- ( ph -> sum_ k e. ( M ..^ N ) ( A ^ k ) = ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) ) |