This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzin | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` if ( M <_ N , N , M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztric | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
|
| 2 | uzss | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
|
| 3 | sseqin2 | |- ( ( ZZ>= ` N ) C_ ( ZZ>= ` M ) <-> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` N ) ) |
|
| 4 | 2 3 | sylib | |- ( N e. ( ZZ>= ` M ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` N ) ) |
| 5 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 6 | iftrue | |- ( M <_ N -> if ( M <_ N , N , M ) = N ) |
|
| 7 | 5 6 | syl | |- ( N e. ( ZZ>= ` M ) -> if ( M <_ N , N , M ) = N ) |
| 8 | 7 | fveq2d | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` if ( M <_ N , N , M ) ) = ( ZZ>= ` N ) ) |
| 9 | 4 8 | eqtr4d | |- ( N e. ( ZZ>= ` M ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` if ( M <_ N , N , M ) ) ) |
| 10 | uzss | |- ( M e. ( ZZ>= ` N ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` N ) ) |
|
| 11 | dfss2 | |- ( ( ZZ>= ` M ) C_ ( ZZ>= ` N ) <-> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` M ) ) |
|
| 12 | 10 11 | sylib | |- ( M e. ( ZZ>= ` N ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` M ) ) |
| 13 | eluzle | |- ( M e. ( ZZ>= ` N ) -> N <_ M ) |
|
| 14 | eluzel2 | |- ( M e. ( ZZ>= ` N ) -> N e. ZZ ) |
|
| 15 | eluzelz | |- ( M e. ( ZZ>= ` N ) -> M e. ZZ ) |
|
| 16 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 17 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 18 | letri3 | |- ( ( N e. RR /\ M e. RR ) -> ( N = M <-> ( N <_ M /\ M <_ N ) ) ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N = M <-> ( N <_ M /\ M <_ N ) ) ) |
| 20 | 14 15 19 | syl2anc | |- ( M e. ( ZZ>= ` N ) -> ( N = M <-> ( N <_ M /\ M <_ N ) ) ) |
| 21 | 13 20 | mpbirand | |- ( M e. ( ZZ>= ` N ) -> ( N = M <-> M <_ N ) ) |
| 22 | 21 | biimprcd | |- ( M <_ N -> ( M e. ( ZZ>= ` N ) -> N = M ) ) |
| 23 | 6 | eqeq1d | |- ( M <_ N -> ( if ( M <_ N , N , M ) = M <-> N = M ) ) |
| 24 | 22 23 | sylibrd | |- ( M <_ N -> ( M e. ( ZZ>= ` N ) -> if ( M <_ N , N , M ) = M ) ) |
| 25 | 24 | com12 | |- ( M e. ( ZZ>= ` N ) -> ( M <_ N -> if ( M <_ N , N , M ) = M ) ) |
| 26 | iffalse | |- ( -. M <_ N -> if ( M <_ N , N , M ) = M ) |
|
| 27 | 25 26 | pm2.61d1 | |- ( M e. ( ZZ>= ` N ) -> if ( M <_ N , N , M ) = M ) |
| 28 | 27 | fveq2d | |- ( M e. ( ZZ>= ` N ) -> ( ZZ>= ` if ( M <_ N , N , M ) ) = ( ZZ>= ` M ) ) |
| 29 | 12 28 | eqtr4d | |- ( M e. ( ZZ>= ` N ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` if ( M <_ N , N , M ) ) ) |
| 30 | 9 29 | jaoi | |- ( ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` if ( M <_ N , N , M ) ) ) |
| 31 | 1 30 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` N ) ) = ( ZZ>= ` if ( M <_ N , N , M ) ) ) |