This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the lcm operator. For example, ( 6 lcm 9 ) = 1 8 ( ex-lcm ). (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lcm | |- lcm = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clcm | |- lcm |
|
| 1 | vx | |- x |
|
| 2 | cz | |- ZZ |
|
| 3 | vy | |- y |
|
| 4 | 1 | cv | |- x |
| 5 | cc0 | |- 0 |
|
| 6 | 4 5 | wceq | |- x = 0 |
| 7 | 3 | cv | |- y |
| 8 | 7 5 | wceq | |- y = 0 |
| 9 | 6 8 | wo | |- ( x = 0 \/ y = 0 ) |
| 10 | vn | |- n |
|
| 11 | cn | |- NN |
|
| 12 | cdvds | |- || |
|
| 13 | 10 | cv | |- n |
| 14 | 4 13 12 | wbr | |- x || n |
| 15 | 7 13 12 | wbr | |- y || n |
| 16 | 14 15 | wa | |- ( x || n /\ y || n ) |
| 17 | 16 10 11 | crab | |- { n e. NN | ( x || n /\ y || n ) } |
| 18 | cr | |- RR |
|
| 19 | clt | |- < |
|
| 20 | 17 18 19 | cinf | |- inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) |
| 21 | 9 5 20 | cif | |- if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) |
| 22 | 1 3 2 2 21 | cmpo | |- ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |
| 23 | 0 22 | wceq | |- lcm = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |