This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neggcd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd N ) = ( M gcd N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdneg | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd -u M ) = ( N gcd M ) ) |
|
| 2 | 1 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N gcd -u M ) = ( N gcd M ) ) |
| 3 | znegcl | |- ( M e. ZZ -> -u M e. ZZ ) |
|
| 4 | gcdcom | |- ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M gcd N ) = ( N gcd -u M ) ) |
|
| 5 | 3 4 | sylan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd N ) = ( N gcd -u M ) ) |
| 6 | gcdcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( N gcd M ) ) |
|
| 7 | 2 5 6 | 3eqtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd N ) = ( M gcd N ) ) |