This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdnn | |- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | lcmgcd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
| 5 | nnmulcl | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN ) |
|
| 6 | 5 | nnnn0d | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN0 ) |
| 7 | nn0re | |- ( ( M x. N ) e. NN0 -> ( M x. N ) e. RR ) |
|
| 8 | nn0ge0 | |- ( ( M x. N ) e. NN0 -> 0 <_ ( M x. N ) ) |
|
| 9 | 7 8 | jca | |- ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) ) |
| 10 | absid | |- ( ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
|
| 11 | 6 9 10 | 3syl | |- ( ( M e. NN /\ N e. NN ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
| 12 | 4 11 | eqtrd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) ) |