This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018) (Revised by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptmhm.b | |- B = ( Base ` G ) |
|
| gsummptmhm.z | |- .0. = ( 0g ` G ) |
||
| gsummptmhm.g | |- ( ph -> G e. CMnd ) |
||
| gsummptmhm.h | |- ( ph -> H e. Mnd ) |
||
| gsummptmhm.a | |- ( ph -> A e. V ) |
||
| gsummptmhm.k | |- ( ph -> K e. ( G MndHom H ) ) |
||
| gsummptmhm.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
| gsummptmhm.w | |- ( ph -> ( x e. A |-> C ) finSupp .0. ) |
||
| Assertion | gsummptmhm | |- ( ph -> ( H gsum ( x e. A |-> ( K ` C ) ) ) = ( K ` ( G gsum ( x e. A |-> C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptmhm.b | |- B = ( Base ` G ) |
|
| 2 | gsummptmhm.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsummptmhm.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptmhm.h | |- ( ph -> H e. Mnd ) |
|
| 5 | gsummptmhm.a | |- ( ph -> A e. V ) |
|
| 6 | gsummptmhm.k | |- ( ph -> K e. ( G MndHom H ) ) |
|
| 7 | gsummptmhm.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
| 8 | gsummptmhm.w | |- ( ph -> ( x e. A |-> C ) finSupp .0. ) |
|
| 9 | eqidd | |- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
|
| 10 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 11 | 1 10 | mhmf | |- ( K e. ( G MndHom H ) -> K : B --> ( Base ` H ) ) |
| 12 | ffn | |- ( K : B --> ( Base ` H ) -> K Fn B ) |
|
| 13 | 6 11 12 | 3syl | |- ( ph -> K Fn B ) |
| 14 | dffn5 | |- ( K Fn B <-> K = ( y e. B |-> ( K ` y ) ) ) |
|
| 15 | 13 14 | sylib | |- ( ph -> K = ( y e. B |-> ( K ` y ) ) ) |
| 16 | fveq2 | |- ( y = C -> ( K ` y ) = ( K ` C ) ) |
|
| 17 | 7 9 15 16 | fmptco | |- ( ph -> ( K o. ( x e. A |-> C ) ) = ( x e. A |-> ( K ` C ) ) ) |
| 18 | 17 | oveq2d | |- ( ph -> ( H gsum ( K o. ( x e. A |-> C ) ) ) = ( H gsum ( x e. A |-> ( K ` C ) ) ) ) |
| 19 | 7 | fmpttd | |- ( ph -> ( x e. A |-> C ) : A --> B ) |
| 20 | 1 2 3 4 5 6 19 8 | gsummhm | |- ( ph -> ( H gsum ( K o. ( x e. A |-> C ) ) ) = ( K ` ( G gsum ( x e. A |-> C ) ) ) ) |
| 21 | 18 20 | eqtr3d | |- ( ph -> ( H gsum ( x e. A |-> ( K ` C ) ) ) = ( K ` ( G gsum ( x e. A |-> C ) ) ) ) |