This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlspw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlspw.w | |- W = ( I mPoly U ) |
||
| evlspw.g | |- G = ( mulGrp ` W ) |
||
| evlspw.e | |- .^ = ( .g ` G ) |
||
| evlspw.u | |- U = ( S |`s R ) |
||
| evlspw.p | |- P = ( S ^s ( K ^m I ) ) |
||
| evlspw.h | |- H = ( mulGrp ` P ) |
||
| evlspw.k | |- K = ( Base ` S ) |
||
| evlspw.b | |- B = ( Base ` W ) |
||
| evlspw.i | |- ( ph -> I e. V ) |
||
| evlspw.s | |- ( ph -> S e. CRing ) |
||
| evlspw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlspw.n | |- ( ph -> N e. NN0 ) |
||
| evlspw.x | |- ( ph -> X e. B ) |
||
| Assertion | evlspw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlspw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlspw.w | |- W = ( I mPoly U ) |
|
| 3 | evlspw.g | |- G = ( mulGrp ` W ) |
|
| 4 | evlspw.e | |- .^ = ( .g ` G ) |
|
| 5 | evlspw.u | |- U = ( S |`s R ) |
|
| 6 | evlspw.p | |- P = ( S ^s ( K ^m I ) ) |
|
| 7 | evlspw.h | |- H = ( mulGrp ` P ) |
|
| 8 | evlspw.k | |- K = ( Base ` S ) |
|
| 9 | evlspw.b | |- B = ( Base ` W ) |
|
| 10 | evlspw.i | |- ( ph -> I e. V ) |
|
| 11 | evlspw.s | |- ( ph -> S e. CRing ) |
|
| 12 | evlspw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 13 | evlspw.n | |- ( ph -> N e. NN0 ) |
|
| 14 | evlspw.x | |- ( ph -> X e. B ) |
|
| 15 | 1 2 5 6 8 | evlsrhm | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 16 | 10 11 12 15 | syl3anc | |- ( ph -> Q e. ( W RingHom P ) ) |
| 17 | 3 7 | rhmmhm | |- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
| 18 | 16 17 | syl | |- ( ph -> Q e. ( G MndHom H ) ) |
| 19 | 3 9 | mgpbas | |- B = ( Base ` G ) |
| 20 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 21 | 19 4 20 | mhmmulg | |- ( ( Q e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |
| 22 | 18 13 14 21 | syl3anc | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |