This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco1rhm.y | |- Y = ( R ^s A ) |
|
| pwsco1rhm.z | |- Z = ( R ^s B ) |
||
| pwsco1rhm.c | |- C = ( Base ` Z ) |
||
| pwsco1rhm.r | |- ( ph -> R e. Ring ) |
||
| pwsco1rhm.a | |- ( ph -> A e. V ) |
||
| pwsco1rhm.b | |- ( ph -> B e. W ) |
||
| pwsco1rhm.f | |- ( ph -> F : A --> B ) |
||
| Assertion | pwsco1rhm | |- ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z RingHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco1rhm.y | |- Y = ( R ^s A ) |
|
| 2 | pwsco1rhm.z | |- Z = ( R ^s B ) |
|
| 3 | pwsco1rhm.c | |- C = ( Base ` Z ) |
|
| 4 | pwsco1rhm.r | |- ( ph -> R e. Ring ) |
|
| 5 | pwsco1rhm.a | |- ( ph -> A e. V ) |
|
| 6 | pwsco1rhm.b | |- ( ph -> B e. W ) |
|
| 7 | pwsco1rhm.f | |- ( ph -> F : A --> B ) |
|
| 8 | 2 | pwsring | |- ( ( R e. Ring /\ B e. W ) -> Z e. Ring ) |
| 9 | 4 6 8 | syl2anc | |- ( ph -> Z e. Ring ) |
| 10 | 1 | pwsring | |- ( ( R e. Ring /\ A e. V ) -> Y e. Ring ) |
| 11 | 4 5 10 | syl2anc | |- ( ph -> Y e. Ring ) |
| 12 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 13 | 4 12 | syl | |- ( ph -> R e. Mnd ) |
| 14 | 1 2 3 13 5 6 7 | pwsco1mhm | |- ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z MndHom Y ) ) |
| 15 | ringgrp | |- ( Z e. Ring -> Z e. Grp ) |
|
| 16 | 9 15 | syl | |- ( ph -> Z e. Grp ) |
| 17 | ringgrp | |- ( Y e. Ring -> Y e. Grp ) |
|
| 18 | 11 17 | syl | |- ( ph -> Y e. Grp ) |
| 19 | ghmmhmb | |- ( ( Z e. Grp /\ Y e. Grp ) -> ( Z GrpHom Y ) = ( Z MndHom Y ) ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ph -> ( Z GrpHom Y ) = ( Z MndHom Y ) ) |
| 21 | 14 20 | eleqtrrd | |- ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) ) |
| 22 | eqid | |- ( ( mulGrp ` R ) ^s A ) = ( ( mulGrp ` R ) ^s A ) |
|
| 23 | eqid | |- ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) |
|
| 24 | eqid | |- ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) |
|
| 25 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 26 | 25 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 27 | 4 26 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 28 | 22 23 24 27 5 6 7 | pwsco1mhm | |- ( ph -> ( g e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) |-> ( g o. F ) ) e. ( ( ( mulGrp ` R ) ^s B ) MndHom ( ( mulGrp ` R ) ^s A ) ) ) |
| 29 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 30 | 2 29 | pwsbas | |- ( ( R e. Mnd /\ B e. W ) -> ( ( Base ` R ) ^m B ) = ( Base ` Z ) ) |
| 31 | 13 6 30 | syl2anc | |- ( ph -> ( ( Base ` R ) ^m B ) = ( Base ` Z ) ) |
| 32 | 31 3 | eqtr4di | |- ( ph -> ( ( Base ` R ) ^m B ) = C ) |
| 33 | 25 29 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 34 | 23 33 | pwsbas | |- ( ( ( mulGrp ` R ) e. Mnd /\ B e. W ) -> ( ( Base ` R ) ^m B ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 35 | 27 6 34 | syl2anc | |- ( ph -> ( ( Base ` R ) ^m B ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 36 | 32 35 | eqtr3d | |- ( ph -> C = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 37 | 36 | mpteq1d | |- ( ph -> ( g e. C |-> ( g o. F ) ) = ( g e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) |-> ( g o. F ) ) ) |
| 38 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) ) |
|
| 39 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) |
|
| 40 | eqid | |- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
|
| 41 | eqid | |- ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) |
|
| 42 | eqid | |- ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( mulGrp ` Z ) ) |
|
| 43 | eqid | |- ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) |
|
| 44 | 2 25 23 40 41 24 42 43 | pwsmgp | |- ( ( R e. Ring /\ B e. W ) -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 45 | 4 6 44 | syl2anc | |- ( ph -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 46 | 45 | simpld | |- ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 47 | eqid | |- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
|
| 48 | eqid | |- ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) |
|
| 49 | eqid | |- ( Base ` ( ( mulGrp ` R ) ^s A ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) |
|
| 50 | eqid | |- ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) |
|
| 51 | eqid | |- ( +g ` ( ( mulGrp ` R ) ^s A ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) |
|
| 52 | 1 25 22 47 48 49 50 51 | pwsmgp | |- ( ( R e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) |
| 53 | 4 5 52 | syl2anc | |- ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) |
| 54 | 53 | simpld | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 55 | 45 | simprd | |- ( ph -> ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 56 | 55 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Z ) ) /\ y e. ( Base ` ( mulGrp ` Z ) ) ) ) -> ( x ( +g ` ( mulGrp ` Z ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) |
| 57 | 53 | simprd | |- ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 58 | 57 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s A ) ) y ) ) |
| 59 | 38 39 46 54 56 58 | mhmpropd | |- ( ph -> ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) = ( ( ( mulGrp ` R ) ^s B ) MndHom ( ( mulGrp ` R ) ^s A ) ) ) |
| 60 | 28 37 59 | 3eltr4d | |- ( ph -> ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) |
| 61 | 21 60 | jca | |- ( ph -> ( ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) /\ ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) ) |
| 62 | 40 47 | isrhm | |- ( ( g e. C |-> ( g o. F ) ) e. ( Z RingHom Y ) <-> ( ( Z e. Ring /\ Y e. Ring ) /\ ( ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) /\ ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) ) ) |
| 63 | 9 11 61 62 | syl21anbrc | |- ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z RingHom Y ) ) |