This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| rhmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
||
| rhmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
||
| rhmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
||
| rhmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
||
| rhmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
||
| rhmpropd.g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` J ) y ) = ( x ( .r ` L ) y ) ) |
||
| rhmpropd.h | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` M ) y ) ) |
||
| Assertion | rhmpropd | |- ( ph -> ( J RingHom K ) = ( L RingHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpropd.a | |- ( ph -> B = ( Base ` J ) ) |
|
| 2 | rhmpropd.b | |- ( ph -> C = ( Base ` K ) ) |
|
| 3 | rhmpropd.c | |- ( ph -> B = ( Base ` L ) ) |
|
| 4 | rhmpropd.d | |- ( ph -> C = ( Base ` M ) ) |
|
| 5 | rhmpropd.e | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) |
|
| 6 | rhmpropd.f | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) |
|
| 7 | rhmpropd.g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` J ) y ) = ( x ( .r ` L ) y ) ) |
|
| 8 | rhmpropd.h | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` M ) y ) ) |
|
| 9 | 1 3 5 7 | ringpropd | |- ( ph -> ( J e. Ring <-> L e. Ring ) ) |
| 10 | 2 4 6 8 | ringpropd | |- ( ph -> ( K e. Ring <-> M e. Ring ) ) |
| 11 | 9 10 | anbi12d | |- ( ph -> ( ( J e. Ring /\ K e. Ring ) <-> ( L e. Ring /\ M e. Ring ) ) ) |
| 12 | 1 2 3 4 5 6 | ghmpropd | |- ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |
| 13 | 12 | eleq2d | |- ( ph -> ( f e. ( J GrpHom K ) <-> f e. ( L GrpHom M ) ) ) |
| 14 | eqid | |- ( mulGrp ` J ) = ( mulGrp ` J ) |
|
| 15 | eqid | |- ( Base ` J ) = ( Base ` J ) |
|
| 16 | 14 15 | mgpbas | |- ( Base ` J ) = ( Base ` ( mulGrp ` J ) ) |
| 17 | 1 16 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` J ) ) ) |
| 18 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 19 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 20 | 18 19 | mgpbas | |- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 21 | 2 20 | eqtrdi | |- ( ph -> C = ( Base ` ( mulGrp ` K ) ) ) |
| 22 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 23 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 24 | 22 23 | mgpbas | |- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 25 | 3 24 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 26 | eqid | |- ( mulGrp ` M ) = ( mulGrp ` M ) |
|
| 27 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 28 | 26 27 | mgpbas | |- ( Base ` M ) = ( Base ` ( mulGrp ` M ) ) |
| 29 | 4 28 | eqtrdi | |- ( ph -> C = ( Base ` ( mulGrp ` M ) ) ) |
| 30 | eqid | |- ( .r ` J ) = ( .r ` J ) |
|
| 31 | 14 30 | mgpplusg | |- ( .r ` J ) = ( +g ` ( mulGrp ` J ) ) |
| 32 | 31 | oveqi | |- ( x ( .r ` J ) y ) = ( x ( +g ` ( mulGrp ` J ) ) y ) |
| 33 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 34 | 22 33 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 35 | 34 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) |
| 36 | 7 32 35 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` J ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 37 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 38 | 18 37 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 39 | 38 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) |
| 40 | eqid | |- ( .r ` M ) = ( .r ` M ) |
|
| 41 | 26 40 | mgpplusg | |- ( .r ` M ) = ( +g ` ( mulGrp ` M ) ) |
| 42 | 41 | oveqi | |- ( x ( .r ` M ) y ) = ( x ( +g ` ( mulGrp ` M ) ) y ) |
| 43 | 8 39 42 | 3eqtr3g | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` M ) ) y ) ) |
| 44 | 17 21 25 29 36 43 | mhmpropd | |- ( ph -> ( ( mulGrp ` J ) MndHom ( mulGrp ` K ) ) = ( ( mulGrp ` L ) MndHom ( mulGrp ` M ) ) ) |
| 45 | 44 | eleq2d | |- ( ph -> ( f e. ( ( mulGrp ` J ) MndHom ( mulGrp ` K ) ) <-> f e. ( ( mulGrp ` L ) MndHom ( mulGrp ` M ) ) ) ) |
| 46 | 13 45 | anbi12d | |- ( ph -> ( ( f e. ( J GrpHom K ) /\ f e. ( ( mulGrp ` J ) MndHom ( mulGrp ` K ) ) ) <-> ( f e. ( L GrpHom M ) /\ f e. ( ( mulGrp ` L ) MndHom ( mulGrp ` M ) ) ) ) ) |
| 47 | 11 46 | anbi12d | |- ( ph -> ( ( ( J e. Ring /\ K e. Ring ) /\ ( f e. ( J GrpHom K ) /\ f e. ( ( mulGrp ` J ) MndHom ( mulGrp ` K ) ) ) ) <-> ( ( L e. Ring /\ M e. Ring ) /\ ( f e. ( L GrpHom M ) /\ f e. ( ( mulGrp ` L ) MndHom ( mulGrp ` M ) ) ) ) ) ) |
| 48 | 14 18 | isrhm | |- ( f e. ( J RingHom K ) <-> ( ( J e. Ring /\ K e. Ring ) /\ ( f e. ( J GrpHom K ) /\ f e. ( ( mulGrp ` J ) MndHom ( mulGrp ` K ) ) ) ) ) |
| 49 | 22 26 | isrhm | |- ( f e. ( L RingHom M ) <-> ( ( L e. Ring /\ M e. Ring ) /\ ( f e. ( L GrpHom M ) /\ f e. ( ( mulGrp ` L ) MndHom ( mulGrp ` M ) ) ) ) ) |
| 50 | 47 48 49 | 3bitr4g | |- ( ph -> ( f e. ( J RingHom K ) <-> f e. ( L RingHom M ) ) ) |
| 51 | 50 | eqrdv | |- ( ph -> ( J RingHom K ) = ( L RingHom M ) ) |