This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1pw.q | |- Q = ( S evalSub1 R ) |
|
| evls1pw.u | |- U = ( S |`s R ) |
||
| evls1pw.w | |- W = ( Poly1 ` U ) |
||
| evls1pw.g | |- G = ( mulGrp ` W ) |
||
| evls1pw.k | |- K = ( Base ` S ) |
||
| evls1pw.b | |- B = ( Base ` W ) |
||
| evls1pw.e | |- .^ = ( .g ` G ) |
||
| evls1pw.s | |- ( ph -> S e. CRing ) |
||
| evls1pw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1pw.n | |- ( ph -> N e. NN0 ) |
||
| evls1pw.x | |- ( ph -> X e. B ) |
||
| Assertion | evls1pw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1pw.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1pw.u | |- U = ( S |`s R ) |
|
| 3 | evls1pw.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1pw.g | |- G = ( mulGrp ` W ) |
|
| 5 | evls1pw.k | |- K = ( Base ` S ) |
|
| 6 | evls1pw.b | |- B = ( Base ` W ) |
|
| 7 | evls1pw.e | |- .^ = ( .g ` G ) |
|
| 8 | evls1pw.s | |- ( ph -> S e. CRing ) |
|
| 9 | evls1pw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evls1pw.n | |- ( ph -> N e. NN0 ) |
|
| 11 | evls1pw.x | |- ( ph -> X e. B ) |
|
| 12 | eqid | |- ( S ^s K ) = ( S ^s K ) |
|
| 13 | 1 5 12 2 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 14 | 8 9 13 | syl2anc | |- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 15 | eqid | |- ( mulGrp ` ( S ^s K ) ) = ( mulGrp ` ( S ^s K ) ) |
|
| 16 | 4 15 | rhmmhm | |- ( Q e. ( W RingHom ( S ^s K ) ) -> Q e. ( G MndHom ( mulGrp ` ( S ^s K ) ) ) ) |
| 17 | 14 16 | syl | |- ( ph -> Q e. ( G MndHom ( mulGrp ` ( S ^s K ) ) ) ) |
| 18 | 4 6 | mgpbas | |- B = ( Base ` G ) |
| 19 | eqid | |- ( .g ` ( mulGrp ` ( S ^s K ) ) ) = ( .g ` ( mulGrp ` ( S ^s K ) ) ) |
|
| 20 | 18 7 19 | mhmmulg | |- ( ( Q e. ( G MndHom ( mulGrp ` ( S ^s K ) ) ) /\ N e. NN0 /\ X e. B ) -> ( Q ` ( N .^ X ) ) = ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` X ) ) ) |
| 21 | 17 10 11 20 | syl3anc | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` X ) ) ) |