This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgss.1 | |- B = ( Base ` R ) |
|
| Assertion | subrgid | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | |- B = ( Base ` R ) |
|
| 2 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 3 | 1 | ressid | |- ( R e. Ring -> ( R |`s B ) = R ) |
| 4 | 3 2 | eqeltrd | |- ( R e. Ring -> ( R |`s B ) e. Ring ) |
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | 1 5 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 7 | ssid | |- B C_ B |
|
| 8 | 6 7 | jctil | |- ( R e. Ring -> ( B C_ B /\ ( 1r ` R ) e. B ) ) |
| 9 | 1 5 | issubrg | |- ( B e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s B ) e. Ring ) /\ ( B C_ B /\ ( 1r ` R ) e. B ) ) ) |
| 10 | 2 4 8 9 | syl21anbrc | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |